Post #3: isolating and suppressing a specific immune response

In my very first post, I discussed how many autoimmune disorders are treated through immune suppressant drugs which can leave a patient susceptible to many other infectious diseases and infections. It is certainly not a perfect system, and scientists are now looking at ways in which to suppress only the sector of the immune system that is generating the autoimmune response. Researchers supported by the National Institute of Biomedical Imaging and Bioengineering (NIBIB) are looking at the natural methods the body uses to suppress inappropriate immune responses. Normally, when a cell dies through apoptosis, it releases chemicals that initiate a response from a type of cell called macrophages that absorb and deposit the dead cells’ antigens in the spleen into a pool of T-cells- some of the cells responsible for an immune response. Then the macrophages suppress any T-cells with the ability to bind to self-antigens to not have a negative autoimmune attack. Currently, the method being tested in mice is coupling myelin cells in subjects with multiple sclerosis (in which myelin cells cause an autoimmune response) with self-antigens that do not bind with T-cells. So far this treatment has proven to be extremely effective in halting the progression of the multiple sclerosis in mice, and the next step is clinical trials. However, cellular therapy is apparently very costly, time-consuming, and needs to be done in a high-tech facility, and thus progress with this research is going to be difficult. Still, this method of treatment is not specific to multiple sclerosis and is projected to be effective in many other autoimmune disorders and diseases like allergies, type I diabetes, and maybe even Rheumatoid arthritis

 

https://www.nibib.nih.gov/news-events/newsroom/research-breakthrough-selectively-represses-immune-system

https://study.com/academy/lesson/non-self-antigens-self-antigens-allergens.html

Leave a Reply