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Abstract

Completely soft and flexible robots offer to revolutionize fields rang-
ing from search-and-rescue to endoscopic surgery. One of the outstand-
ing challenges in this burgeoning field is the chicken-and-egg problem of
body/brain design: development of locomotion requires the pre-existence
of a locomotion-capable body, and development of a location-capable-
body requires the pre-existence of a locomotive gait. This problem is
compounded by the high degree of coupling between the material prop-
erties of a soft body (such as stiffness or damping coefficients) and the
effectiveness of a gait. This paper synthesizes four years of research into
soft robotics, in particular describing three approaches to the co-discovery
of soft robot morphology and control. In the first, muscle placement and
firing patterns are co-evolved for a fixed body shape with fixed mate-
rial properties. In the second, the material properties of a simulated soft
body co-evolve alongside locomotive gaits, with body shape and mus-
cle placement fixed. In the third, a developmental encoding is used to
scalably “grow” elaborate soft body shapes from a small seed structure.
Consideration of simulation time, as well as the challenges of physically
implementing soft robots in the real world are discussed.

1 Introduction

Imagine a soft, resilient and deformable robot able to change shape and squeeze
through small apertures. The idea of using such a robot for urban search and
rescue holds great appeal, particularly in light of recent tragic earthquakes in
China, New Zealand, and Japan. Once the domain of science fiction, soft robots
are approaching reality – thanks to recent advances in engineering and material
science. Unfortunately, the very properties which make soft robots so appeal-
ing also introduce significant obstacles, especially in the domains of design and
control. Elasticity and deformability come at the cost of resonances and tight
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dynamic coupling between components [23] – properties which are often assid-
uously avoided in conventional engineering approaches to robotic design. Small
changes to the elasticity of a soft robot can cause unexpectedly large changes
in performance.

The problems of soft robot design can be summarized with three questions:

• What should a soft robot look like? (Morphology)

• What should a soft robot be made out of? (Material)

• How should a robot move? (Locomotion)

Of course, these are not independent variables: solving each problem is pred-
icated upon, and sensitive to, the pre-existence of solutions to the corresponding
problems. The design of a soft robot’s locomotive gait, for instance, depends
upon both its morphology and properties such as elasticity and friction. This is
in a sense an elaboration on the chicken-and-egg problem posed by body/brain
design in more conventional robots [12, 13], with the added complexities which
come from the effects of material properties upon a soft body’s dynamics. In
light of that, our approach to solving the problem will be similar: co-evolution.

The choice of a stochastic search technique like co-evolution is justified in
this case given both the enormous scope of the problem and the absence of the
purely analytical design methodologies available in conventional robotics. The
field of evolutionary design has had considerable success in other complex design
domains ranging from satellite antennae [11] to telescope lenses [1].

The ability of GAs to develop unexpectedly novel solutions to design prob-
lems is best demonstrated with an early example from our research. A small
lozenge shaped robot with fixed body shape and fixed muscle placement was im-
ported into our simulation environment, and muscle firing patterns evolved to
produce locomotion. Rather than arriving at the anticipated forward-crawling
motion along the long body axis, the GA instead discovered that a sideways
motion (as illustrated by the frames in Figure 1) was much more efficient. (All
movies referenced in this paper can be seen on YouTube by searching for the
“alife-journal-softbot” tag.)

The research described in this paper focuses on three evolutionary approaches
to the problem of soft robot design and control. In each case we allow two prop-
erties to vary while the others remain fixed.

Gait-Muscle: Given a fixed body shape, co-evolving muscle placement
and firing patterns.

Gait-Material: Given a fixed morphology (shape and muscle placement)
co-evolving material properties alongside gaits

Developmental: Given a fixed gait, evolving open-ended and variable
morphologies (implicitly varying muscle placement and material proper-
ties)
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Figure 1: Genetic Algorithms often arrive at unexpectedly novel results. When
asked to develop a simple locomotive gait for this lozenge-shaped robot, the
algorithm arrived at a “side-winding” motion rather than the expected forward
motion.
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Scheme Gait-Muscle Gait-Material Developmental
Body Shape Fixed Fixed Evolved
Muscle Placement Evolved Fixed Evolved
Material Properties Fixed Evolved Evolved
Gait Evolved Evolved Fixed

In the case of the first inquiry (Gait-Muscle), we will show how properties
like bilateral symmetry and oppositional muscles can emerge as the result of
evolution. In case of the second approach (Gait-Material) we will demonstrate
a sensitivity between material properties and gaits, and arrive at unexpected
forms of locomotion. In the third approach (Developmental) we will show
how a developmental encoding can implicitly affect both material properties and
muscle placement, and arrive at novel and surprising open-ended morphologies.

Salient to each approach is the problem of computational overhead imposed
by simulating soft rather than rigid objects. Conventionally, soft bodies simula-
tors ranging from Finite Element Analysis (FEA) and Computational Fluid Dy-
namics (CFD) to the off-the shelf physics engine used in our research (NVidia’s
PhysX) rely upon tetrahedral meshes to represent soft bodies, and the com-
plexity of simulation is directly tied to the number tetrahedra in the mesh.
For the fixed-morphology approach (Gait-Material), we introduce a method
which scales model mesh resolution over the course of evolution, such that a
large early portion of evolutionary time is devoted to low resolution models of
the robot, and as evolution progresses mesh resolution increases. This resolution
scaling achieves fitnesses comparable to those achieved by fixed high resolution
while reducing overall computation time. For the evolved-morphology approach
(Developmental), we slowly increase the developmental “lifetime” of the soft
robot over the course of evolution, thereby allowing complexity of the body to
increase in complexity over time.

Each exploration not only provides insight into the creation of physically
grounded soft robots, but provides feedback into fields such as biomedicine and
biomechanics.

2 Simulating Soft Robots

Once the domain of Finite Element Analysis (FEA) and Computational Fluid
Dynamics (CFD), physics simulation is now much more accessible thanks to
recent advances in commercial off-the-shelf video-game physics engines accel-
erated by massively parallel graphics cards (GPUs). This General Purpose
Computing on Graphics Processing Units (GPGPU) can provide speedups of
several orders of magnitude over software-only simulation. [2]. In particular,
our research uses NVidia’s PhysX engine because of its the ability to simulate
complex three-dimensional soft bodies.
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2.1 Representing Soft Bodies

In PhysX (as well as in FEA and CFD), soft bodies such as the caterpillar robots
shown in Figure 3 are formed out of tetrahedral meshes . A single tetrahedron is
defined by four vertices and four corresponding faces, as illustrated by figure 2.
A mesh is formed by connecting adjacent tetrahedra at common vertices.

2.1.1 Soft Body Material Properties

The material properties of a soft body mesh can be tuned by varying a set of
constraints placed upon the tetrahedra within a mesh. Two values, stretching
stiffness and damping co-efficient, tune the parameters of a spring-and-damper
system along each edge of the tetrahedron. A tetrahedral mesh with high
stretching stiffness will try hardest to maintain its shape, while one with a low
stiffness will flop to the floor like a deflating balloon. The damping coefficient of
a soft body changes how fast it returns to equilibrium after a perturbation. A
low damping co-efficient allows soft bodies in motion to oscillate more. A third
constraint, volume stiffness, determines how hard each tetrahedra attempts to
maintain a constant volume. Changing each of these values affects the softness
of the all tetrahedra in a soft body, although not necessarily in a linear manner.
As illustrated by Figure 3, by varying these material properties, the behavior of
soft bodies in PhysX can range from a near fluid, to rubbery Jell-O to a semi-
rigid plastic. Finally, the friction of the crawling surface can change within a
relatively narrow range in order to model how well the soft material grips the
substrate.

The bottleneck for soft bodies simulation is the density of the underlying
tetrahedral mesh: simulation slows dramatically as the number of tetrahedra in
a mesh grow (Figure 3). The trade-off is that low-resolution meshes have lower
fidelity to the real-world behavior of the corresponding physical soft body.

2.2 Soft Body Gaits

One of the more interesting consequences of soft robotics is the lack of conven-
tional actuators. Because suppleness and deformability are important, devices
like servos and stepper motors are not viable. Absent those, one valuable alter-
native is nitinol “memory wire” [23]. These artificial muscles act essentially as
linear actuators, and can be modeled in PhysX by applying equal and opposite
force vectors to two attachment vertices. Figure 5 shows an example layout of
the muscles on a typical soft robot.

Once given a fixed set of muscles in a soft robot, their firing patterns can
be modeled with a square wave characterized by a duty cycle, a phase offset,
and a period (Figure 4). The period of the firing pattern represents the time
between the square wave’s rising edges. Duty cycle corresponds to the percent
of time that a muscle is “on” during that period. Finally, the phase of the firing
pattern represents the delay before the first rising edge.
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Figure 2: . A tetrahedron is defined by four vertices and four corresponding
faces. The material properties of a mesh can be tuned by changing the stretching
and damping coefficients of spring-and-dampers systems along the edge, and by
changing the tetrahedron’s resistance to volume changes.
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Figure 3: Soft bodies in PhysX, such as the ones shown above, are built out of
meshes of tetrahedra. Model resolution can vary with the number of tetrahedra
in the mesh. Example with low mesh resolution (top) and high resolution (mid-
dle). Changing the underlying material properties can drastically affect both
the shape and the behavior of a soft body. Images of the same soft body with
high (middle) and low (bottom) stretching stiffnesses.

PHASE PERIOD
DUTY

Figure 4: Soft robot gaits are composed of firing patterns for a set eight sym-
metrical muscles (four per side). Each of the eight patterns is described by a
unique duty cycle, phase, and period.
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Figure 5: An illustration of the linear actuator “muscles” of the simulated
soft body. Although muscles are aligned with bilateral symmetry, no symmetry
constraints were placed on the underlying firing patterns.
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3 Co-Evolving Muscle Placement and Gaits

One of the more fundamental choices in designing soft robots is in picking the
placement of linear actuators. In our early design of soft robots [23] there were
two assumptions that we took for granted, both influenced by biomimicry. The
first is that muscle placement should be bilaterally symmetric, that is that the
left and right side of the robot should be identical. The second is that, given
the elastic nature of soft bodies, muscles acting in opposition were unnecessary
– that the elastic pre-stress of the body wall would restore body shape when
the linear actuator was relaxed.

In order to challenge both of these assumptions by o-evolving muscle place-
ment alongside gait (muscle firing patterns), with no constraint placed upon
symmetry or opposition. while keeping body shape and material properties
fixed. The robot model we used was the caterpillar robot seen on the top of
Figures 3 with 10 arbitrarily placed muscles.

The firing pattern of a single muscle was encoded in a 3-tuple of (period, phase, duty)
and a genome for all 10 muscles encoded as 10 such 3-tuples. A single muscle’s
attachment vertices were represented as a pair (v1, v2), and a corresponding
genome contained 10 such pairs. Each linearly encoded type of genome was
subject to normal per-locus mutation and two-point crossover.

The general scheme we used, as illustrated by Figure 6, was to have two
parallel populations, one of gait genotypes and one of vertex genotypes. Evo-
lution first progressed on the gait genotypes, using a hand-picked initial set of
attachment vertices. After 200 generations, the current-best gait was then used
as a fixed reference with which to evolve the population of attachment points.
After another 200 generation interval, the current-best attachment points were
used to evolve a new set of gaits. This see-saw pattern was repeated until 2000
generations of each population had been evolved.

In each population, fitness was determined by the linear distance traveled
by the soft body over a fixed number (8000) of simulator time steps.

A representative solution is shown in Figure 7 (a video exists on our YouTube
page). We can make two interesting qualitative observations about this evolved
muscle placement. The first is that this solution, like most in our experiment,
has a high degree of bilateral symmetry: most muscles have a matching muscle
on the opposite side.

The second, more surprising result is the emergence of muscles acting in
opposition: in this case the middle leg on the lower image is pulled both forward
and backwards by a matched pair of muscles. While not strictly necessary, since
the elastic force of the soft body will pull the leg back into place, an oppositional
muscle is able to move the leg forward more quickly and thereby speed up the
gait

While largely qualitative, these results show how relaxing otherwise assumed
design constraints allows genetic algorithms to both confirm those assumptions
(visavis symmetry) and improve solutions by contradicting them (visavis oppo-
sition).
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Use Best Vertices

Evolving Population of Evolving Population of
Muscle Firing Patterns

Use Best Gait

Muscle Attachment Vertices

Figure 6: Co-evolving muscle placement and gaits involves two parallel popu-
lations, a population of attachment vertices and a population of muscle firing
patterns. First, gaits are evolved using the current best attachment points, then
200 generations later, muscle attachment points are evolved using the current
best gait.

Symmetric
Pairs

Opposition Pair

Figure 7: Images of the left and right sides of a robot with evolved muscle
placement and gaits (Gait-Muscle). The bottom image is mirrored to provide
a more direct comparison (in both images the “front” of the robot is to the
right.) When muscle placement is co-evolved alongside gaits, bilateral symmetry
emerges, even though it is not explicitly constrained. More unexpectedly, some
muscles are placed in oppositional pairs.
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4 Co-Evolving Gaits and Material

The next question we ask is, whether given a specific body plan with specific
muscle placements, we can co-evolve firing patterns alongside material proper-
ties. It is worth emphasizing that this question is grounded in real-world soft
robotics applications: many physical soft robots employ silicone elastomers,
whose material properties can be changed quite significantly during the mixing
process [23].

Our goal in this case was to simultaneously discover a suitably matched
gait/property pair. Because of the dynamics of a soft body in motion the
fitness of a specific gait can vary greatly depending upon the underlying material
properties, and, similarly, the fitness of a material property set depends greatly
upon the gait it is tested against. Our co-evolutionary scheme in this case is
identical to that in Section 3, except that while one population contained gait
genomes for eight muscles, the other contained genomes representing material
properties (as described in Section 2.1.1). Property values were limited to keep
results realistic. Ranges are as follows (note that in PhysX, like most physics
simulators, these properties are unit-less):

Property Min Max
Volume Stiffness 0.1 1.0
Stretching Stiffness 0.3 1.0
Friction 0.5 1.0
Damping 0.0 1.0

Initially, a fixed “best guess” of material property values was used for evalu-
ating the fitness of each gait. The second population evolved soft body material
properties, where a single genome contained values for a specific set of stretching
stiffness, volume stiffness, damping co-efficient and body friction. Initially, for
this population’s fitness evaluations, a fixed “best guess” of firing patterns was
used.

Every tenth generation, the gait used for material property fitness evaluation
was updated with the current highest-fitness gait from the gait population, and
the material properties used for gait population evaluation were updated from
the highest-fitness property values.

As a measurement of “wall time”, with population size 40, a typical run took
24 hours to evaluate 100 generations of each population on a 2.66 GHz Core i7
processor with 6 GB of RAM.

We have two analyses of our experiments to offer. The first is a more qualita-
tive description of the gaits produced by our system and some insight into how
changing material properties affect fitness. The second more quantitatively ex-
plores the effect of scaling the mesh resolution over the course of an evolutionary
run.
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Use Best Properties

Evolving Population of Evolving Population of
Muscle Firing Patterns

Use Best Gait

Physical Properties

Figure 8: Similarly, Co-evolving gaits with physical properties requires a popu-
lation of gaits and a population of physical properties.
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4.1 Analyzing effects of Material Properties on Gaits

Our experiments consistently produced interesting and effective gaits, and anal-
ysis suggests that being able to change material properties alongside firing pat-
terns has a positive effect upon the outcome. A qualitative and visual represen-
tation lies in videos of the actual gaits available on our YouTube channel.

One video shows a bipedal - that is, bilaterally asymmetric – gait. Firing
patterns on each side of the body co-ordinate in a rough front-to-back wave
pattern in order to collectively lift the limbs upwards and forwards during the
upswing, before relaxing into the downswing to pull against the ground. The
relative softness of the material can be seen in the amount of flexing undergone
by each leg. A second video by comparison shows a more symmetrical gait
achieved by a forward-moving wave which produces what almost looks like a
gallop.

There were some distinct differences in material property values across these
two runs, as summarized below:

Property Bipedal Wave
Volume Stiffness 0.986 0.996
Stretching Stiffness 0.982 0.998
Friction 0.598 0.804
Damping 0.0004 0.0

The most notable difference is the friction – corresponding to the stickiness
of the robot’s feet, however when watching the videos, the relatively minor
numerical differences in the other property values appear, at least qualitatively,
to be reflected in the behavior of the soft bodies.

Of further interest is the change in best-of material values properties which
occur over the course of an evolutionary run, as shown in Figure 10. While
damping coefficient and volume stiffness show relatively monotonic progress
toward a fixed value, stretching stiffness and friction vary consistently across a
relatively wide range during evolution. The effect of material property changes
on fitness is even more apparent when shown alongside the corresponding fitness
graph (shown on the bottom of Figure 10). The large swing in damping co-
efficient at generation 7 corresponds to a matching significant rise in fitness.
Other, smaller, fitness gains also appear to have corresponding material value
changes.

4.2 Scaling Mesh Resolution

Our second analysis is of the benefits offered by scaling mesh resolution over
the course of evolution. Recall that the number of tetrahedra in a mesh are the
determining factor in simulation run time, as well as in simulator fidelity. We
ran a suite of experiments exploring the effects of different scaling schemes, as
summarized in Table 1.
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Figure 9: A comparison of co-evolutionary progress on a static mesh resolution
(bottom) vs. a single resolution switch. The sudden drop in fitness correspond-
ing to resolution change is caused by the low-resolution gait working less well
on the higher resolution mesh.
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Figure 10: Material property values for population bests per generation. Large
swings in values, such as the drop in damping at generation 7, are co-ordinated
with large improvements in fitness (bottom figure)
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Our intuition was that the the bulk of early evolutionary time, which largely
consist of the soft robot flailing around – that is attempting to achieve non-
zero fitness, could be performed on relatively low meshes, and then as evolution
and fitness progressed, mesh resolution could be scaled upwards to raise the
emphasis on fidelity at the cost of longer evaluation times.

There were five mesh resolutions available to the system: low, medium low,
med, high, and maximum. Runs could switch 0,1,2 or 4 times. All of the
non-static runs shown began on the low mesh – runs that are listed with a
mesh switch count of one, for instance, changed from the low mesh to their
end mesh. Runs listed with a mesh switch count greater than one ran on an
intermediate mesh(es) before reaching their end mesh. All other properties, such
as population size, remained constant across experiments. Resolution changes
occurred every 30 generations.

Fitness Hours End Mesh Mesh Switches
40.16 34 Low 0
46.94 42 Low 0
24.61 72 Max 0
14.86 25 MedLow 0
21.47 25 MedLow 1
11.97 24 Med 0
12.86 24 Med 1
15.99 48 Med 0
16.65 48 Med 1
15.91 48 Med 2
6.18 46 Max 4

Table 1: A summary of results from resolution scaling

Figure 9, which compares evolution with a single (low-to-medium-low) switch
to that with a fixed (medium-low) mesh resolution show the consequences of this
process: fitness in the scalable evolution during its “low” phase progresses much
more rapidly during the first 10 hours of simulation. Once the phase change into
a higher mesh density occurs, however, there is a dramatic drop in fitness, and
the scalable run loses much of the ground it had gained (though it still remains
above the fixed resolution result). During the following 15 hours, the scalable
run is able to make up much of the lost fitness, and improves more rapidly than
the static mesh.

This steep loss in fitness is due to the large extent to which the success of
a gait is highly tuned to its specific mesh resolution. The same actually holds
true of the evolving material properties as well. Gaits and physical properties
evolved at one mesh resolution simply do not translate perfectly when placed
in a higher resolution simulation.

This dependence on mesh resolution also has a clear effect upon the the
maximum obtainable evolutionary fitness: over similar time scales, even the
static meshes show significant differences in final fitness.
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Figure 11: Results comparing the consequence of switching mesh resolution
multiple times over the course of evolution. Each time resolution changes there
is a dramatic drop in fitness due to the relatively poor translation of gaits and
material properties into the higher mesh.
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The last entry in Table 1 illustrates the cost of switching clearly: the final
fitness is less than half of that achieved by any other run. This suggests that,
in its current form, sometimes the cost of resolution scaling can be too high.
Figure 11 shows a case where even a single switch in resolution results in an
equivocal, at best, improvement in overall fitness.

The source of this loss in fitness can possibly be illustrated with an interest-
ing qualitative distinction of gaits evolved at varying resolutions: all the gaits
evolved in a low resolution mesh produced bi-pedal gaits, whereas gaits produced
in the “maximum” mesh tended to be more bilaterally symmetric, involving in-
stead a forward-propagating wave-like motion. In other words, sauce for the
(low-resolution) goose may not be sauce for the (high-resolution) gander. A
high-fitness bipedal gait evolved a low mesh resolution ceases to be competitive
when placed in a higher-resolution body.

Mesh scaling certainly holds promise, and in a few cases illustrated above,
offers an improvement over static-resolution evolution, despite the large fitness
drops associated with resolution switches. While it remains to be seen if this is
a viable way to address the issue of long simulation times, we are hopeful of its
prospects. Our next section explores an alternative method for variable mesh
resolution.

5 Evolving Body Shape Development

In our final approach we use a grammatically-based developmental encoding to
evolve complete soft robot shapes in an open-ended manner. As we’ll show, this
allows us to address several of the challenges of soft robotics discussed above.

Developmental encodings have been used with considerable success to cre-
ate the morphology of simulated robotics [19, 4, 5, 9, 14, 10], most often in
conjunction with off-the-shelf physics engines. While there are several different
flavors of generative encoding (among them L-Systems [10, 15], Genetic Regula-
tory Networks [3], and HyperNEAT [21] – Stanley and Miikkulainen [22] provide
a useful taxonomy), they are largely used to create rigid structures, and none
explicitly operate on tetrahedral meshes.

For our purposes, the open-ended generation of tetrahedral meshes, we
have created a face encoding L-system [16] capable of growing multi-resolution
tetrahedral-mesh robot morphologies. L-Systems use a sequence of rewrite rules
which operate on the faces of tetrahedra. Similar encodings operating on graph
edges rather than tetrahedral faces have been used to grow both 3-D surfaces[6]
and tensegrity structures [17].

The details of our particular encoding are as follows. Assuming that each
face of a tetrahedron can be given a label, we specify three operations which can
be performed upon a face, as illustrated in Figure 12. For the sake of simplicity,
we assert that these operators can only be applied to exposed faces – that is,
those which are not shared by two adjacent tetrahedra – most commonly, but
not exclusively, on the exposed outer surface of a tetrahedral mesh. A “ruleset”
can then be created by specifying a fixed number of nonterminal labels, and
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Figure 12: An illustration of the three rules which can be applied to the face
of a tetrahedron. Clockwise from top left: the original tetrahedron with face
labeled “A”, relabel replaces “A” with “B”, subdivide replaces the face with
four smaller faces (this requires subdividing the entire tetrahedron), and grow
adds a new tetrahedron with face labels “B”,”C”,”D”

providing a rewrite rule for each label. A detailed description of this encoding
is provided by an earlier paper of ours [16].

Tetrahedral meshes of arbitrary size can now be grown by iteratively apply-
ing a ruleset to an initial ”seed” tetrahedron like the one shown in Figure 2.
Each exposed face of the growing tetrahedral mesh is kept in a queue, and is
associated with three vertices and exactly one tetrahedron. (A face shared by
two tetrahedra is by definition not exposed.) For every generation of growth,
the open faces are iteratively removed from the queue and the appropriate rule
for their is applied. For relabel, a new face with the new label is enqueued. For
grow and divide, new vertices and tetrahedra are computed and added, and
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Figure 13: The growth of a tetrahedral mesh by iteratively applying the rules
from a face encoding ruleset.

then the resulting three (grow) or four (subdivided) new faces are enqueued.
Figure 13 shows the growth of one such tetrahedral mesh.

5.1 Implicitly Variable Mesh resolution

An valuable consequence of this encoding, particularly in light of our efforts in
Section 4.2 is that it can result in tetrahedral meshes of variable resolution: each
subdivide operation on a face converts the single parent tetrahedron into eight
smaller tetrahedra, any of which can in turn be subdivided into eight smaller
tetrahedra 1/64th the size of the original tetrahedron. Meanwhile, any tetrahe-
dron not subject to face subdivisions will retains its original dimensions. Since
the time complexity of a soft body simulation is determined largely by the total
number of tetrahedra, this variable resolution allows for a certain reduction in
simulation time compared to an identical tetrahedral mesh composed of homo-
geneously sized tetrahedra. As we will see in the upcoming section, this has
consequences for differential stiffness within the mesh as well.

Rulesets describe a developmental process, and as such they are an indirect
encoding of a tetrahedral mesh physical phenotype. These grammars can be
evolved by treating the rulesets as genotypes. and the tetrahedral mesh which
results after a fixed number of iterations as the phenotype. With a grammar as a
genotype, an evolving population simply consists of collection of these grammar
genotypes.

5.2 Moving Without Linear Actuators

Using linear actuators with attachment vertices as in our previous two ap-
proaches would have further complicated the grammar. We chose instead to
periodically vary the stiffness of the tetrahedral mesh, which results in corre-
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A → grow {DBF}
B → grow {ADF}
C → grow {EDF}
D → relabel (D)
E → grow {DCF}
F → divide [DDDG]
G → grow {DDG}

Table 2: An example ruleset.

sponding deformations in the soft body itself. (Hiller and Lipson used a similar
approach in their amorphous robots [7], which they were able to physically im-
plement using closed cell foam and a vacuum chamber [8].) It is worth noting
that in this PhysX implementation a uniform change in stiffness can result in
non-uniform deformations, since a region of smaller tetrahedra will deform more
than region with a single large tetrahedron when under similar loads, largely
due to the increased number of vertices around which the tetrahedra can flex.

5.3 Evolving Morphology with Grammars

Rulesets such as the one shown in Table 2 describe a developmental process, or
ontogeny. As such they are an indirect encoding of a physical phenotype. These
grammars can be evolved by treating the rulesets as genotypes, and the tetra-
hedral mesh which results after a fixed number of iterations as the phenotype.
Rulesets can be encoded as simple linear strings of characters subject to muta-
tion and crossover. Mutation on a grammar genotype affects only the right hand
side of a rule, and can either change the rule (i.e. grow(A,B, D) → relabel(A),
with extra labels added or removed as necessary) or change a label in the rule
(i.e. grow(A,B, D) → grow(E,B,D). Single point crossover grabs a subset
of production rules from one parent, and the remainder from a second. An
evolving population simply consists of collection of grammar genotypes.

For the experiments which produced the results described below, we used a
fixed population size of 20 and 50% elitism. Parents were chosen with a simple
fitness proportional selection. 40% of offspring were produced via crossover, and
the remainder via mutation. An edit-distance diversity metric was employed to
prevent multiple neutral mutations of a single genotype schema to proliferate.

Each individual was evaluated by applying its genotype grammar rewrite
rules a fixed number of times (20, 40, or 100) in order to produce a phenotype,
and then placing the resulting robot in the PhysX environment. Tetrahedral
mesh stiffness was then cycled between between maximal stiffness and 80% of
maximal (again, all parameters in PhysX are unit-less), with a period of 200
time steps, and the displacement vector over each cycle recorded. Total distance
traveled during a 4000 time step window was then computed by adding the
displacement vectors.

In order to prevent the common but pathological trait of toppling, in which
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Figure 14: A comparison of evolutionary progress of tetrahedral meshes pro-
duced after 20 iterations against those produced after 40 iterations. More iter-
ations tend to produce larger meshes.

evolving bodies move their centers of mass by simply falling over (first made fa-
mous by Sim’s evolved agents [20], the displacement vectors were passed through
a low-pass filter, which effectively ignores short term high velocities associated
with toppling, while preserving the more steady state long term slower velocities
due to actual locomotion.

In each experiment, evolution proceeded for 500 generations. Each grammar
was fixed at 7 labels A through G, with seven corresponding rewrite rules.

5.4 Results and Discussion

Every experiment across both iteration levels (20, 40, 100) produced forward
motion of the soft bodies, with no fitness exploitation via toppling. Videos of
several of the evolved soft robots can be seen on our YouTube channel. Fig-
ure 14 compares fitness over time across the three iteration levels. As might be
expected, the bodies produced with 100 iterations traveled further in the same
amount of time than those generated with either 40 or 20 iterations.

Figure 15 contains frames from one such video. In almost every case, the
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evolved gait involves a “scooting” or “ratcheting” motion, where cyclic flexing
on one end robot pushes the robot in the opposite direction.

Figure 15: Frames from a video of the evolved locomotion. Cyclic changes in
stiffness affect the “leg” on the left, and ratchets the rest of the body to the
right.

Elements of body symmetry and modularity are visible in most of the evolved
morphology. Symmetry is somewhat limited by the choice to hard-code the
faces of the seed tetrahedron as ABCD – this meant that in order to achieve
two radially symmetric limbs growing from the original tetrahedron, rewrite
rules which relabeled two of the starting faces to a third common face would
be required - something along the lines of A → relabelG, B → relabelG. In
future experiments we intend to make the initial starting labels a component of
the genome, which will allow for more symmetry, and also for more large-scale
co-ordinated changes in the phenotype.

5.4.1 Grammars Implicitly Specify Both Muscle Function
and Material Properties

As illustrated by the results, the multi-resolution nature of the evolved tetrahe-
dral meshes allows for a significant degree of regional functional differentiation.
What we mean by this is that regions of the body composed of larger tetra-
hedra (lower resolution) tend to remain stiff over the course of locomotion –
thereby providing structure to the body – whereas regions with many smaller
tetrahedra flex more, and thereby act more like muscles. Figure 16 illustrates
this phenomenon more clearly. The region of smaller tetrahedra on the left of
each frame compress and buckle as their stiffness is reduced, while the larger
tetrahedra pivot around the buckling. As stiffness increases again, the structure
is propelled to the right.

While the grammar explicitly determines body shape, this regional differen-
tiation is an emergent property of our grammar. This is quite valuable in that
it allows our grammars to implicitly specify both material properties (in that
regions with smaller tetrahedra are more flexible) as well as function (regions
with smaller tetrahedra act like muscles). Moreover, since mesh resolution can
vary heterogeneously throughout the body we are allowed a much finer-grained
control over mesh resolution than the explicit resolution switching used in Sec-
tion 4.
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Figure 16: An illustration of the regional functional differentiation exhibited
by the evolved meshes. A region with smaller tetrahedra, indicated by the red
arrow, is more flexible and tends to buckle as stiffness is decreased, while larger
tetrahedra are less affected.
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5.5 An Avenue toward
open-ended greater scalability

It is worth noting that Figure 14 is slightly misleading in the sense that this is
not a purely apples-to-apples comparison. Tetrahedral meshes generated with 20
iterations generally have fewer tetrahedra than those generated with 40, or 100
iterations. Since computational complexity is proportional to the the number of
tetrahedra, a “wall time” comparison of the three values might be better means
of comparison.

This does, however, lead to a second observation, more quantitative in na-
ture, which can be seen when the developmental trajectory of an evolved solution
is inspected more closely. Over the course of evolution, fitness of the tetrahe-
dral mesh is measured only once – after a predetermined number of rewrite rules
have been applied. There is, however, an underlying ontogenic process, which
means that every intermediate phenotype between original seed structure and
“fully grown” structure is itself a complete and viable tetrahedral mesh. Given
an evolved grammar, we can therefore measure the fitness of every intermediate
stage of development.

Since the fitness after N rewrites is the only one that matters in our evolu-
tionary setup, the fitnesses of prior (and subsequent) developmental stages isn’t
selected for, and therefore there is no expectation that those stages would have
any significant fitness. However, as the graphs in Figure 17 illustrate, instead
there can be a high degree of fitness throughout the developmental trajectory.
Sometimes, as in the top graph, there is a sharp jump in fitness near the fixed
20-iteration limit, but fitness remains quite stable for an additional 10 iterations
before slowly decaying. In other cases (middle graph), fitness builds gradually
(and non-monotonically) up to the iteration limit, and then drops to around
30% of nominal fitness for the next 10 iterations, and actually jumps up above
50% of nominal fitness after 15 iterations. In a third case (lower figure), there
are ontogenic stages before and after the iteration limit which are twice as high
as the evolved fitness value.

This suggests a new avenue to follow for this developmental encoding: grad-
ually scaling the number of iterations over the course of evolution. This would
in effect offer a scaling process very similar to that we describe in Section 4, but
without the need to hand-code mesh resolution.

5.6 Tetrahedral Robots can be Printed

Although these tetrahedral meshes were evolved in simulation, they are excep-
tionally easy to fabricate in the real world. A stereo lithography (STL) file,
readable by all modern 3-D printers and rapid prototyping machines, can be
generated from a tetrahedral mesh description simply by enumerating the open
faces. Figure 18 provides an example of one such mesh which was printed out of
ABS plastic on a Stratasys printer. Printed robots need not be rigid, of course:
state-of-the-art printers, such as those designed by Objet, are now able to print
in much softer materials, and even cheap desktop prototypers like the Makerbot
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Cupcake can print 3-D shapes out of silicone elastomers.

6 Conclusion: Three Ways to Evolve Soft Robots

The evolution of completely soft robots is a many-headed problem. The three
central challenges, morphology, material, and control, are all interdependent,
and a solution for any one is predicated upon existing solutions to the other
two.

We have explored three ways to approach this problem, in each case holding
one property constant while co-evolving the other two. In the first two cases,
each with fixed morphology, this required two separately evolving populations,
where the current-best from one parameter’s population (for instance, gait) was
used as the baseline to evolve a second parameter (for instance muscle location).
In the third case, we held control constant while using a developmental encoding
which was able to simultaneously control both muscle placement and material
properties by varying tetrahedral mesh size.

While each approach highlights the challenges involved in soft robot evolu-
tion, each leads to interesting insights as well.

Results from our first approach, Gait-Muscle, suggest that bilateral sym-
metry and oppositional muscles can be valuable in soft robotic gaits. Our second
approach, Gait-Material, highlight the tight coupling between soft robotic ma-
terial properties and gaits, and suggest that both should be evolved in tandem.
This emphasis on the effects of body dynamics have a recent biological analog
as well in the discovery that in the Manduca sexta caterpillar, the biomimetic
muse of this research, the internal gut plays a surprisingly important role in
locomotion [18].

We find the most promise in our third approach, Developmental, through
which a generative encoding is able to explicitly generate body shape while
implicitly determining heterogeneous material properties throughout the body
as well as muscle placement. In our upcoming work we look forward to leveraging
the developmental stability of the grammatical encoding in order to find a way
to scale to increasingly large body sizes without determining the number of
iterations a priori.

Taken collectively, we hope that these these insights can inform our efforts
at achieving physically embodied soft robots. Success in this regard will have
valuable applications in fields ranging from soft and flexible urban search and
rescue robots to more compliant biomedical and orthoscopic devices.
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Figure 17: Phenotype fitness measured over the course of development, and
normalized around the fitness measured at the fixed iteration limit (vertical red
line). Although during evolution fitness is only measured at that iteration limit,
fitness often remains stable as development proceeds past the limit (top graph),
and fitness is sometimes higher at earlier and later developmental stages.

Rieffel et al. 29 of 30



Growing and Evolving Soft Robots

Figure 18: Tetrahedral meshes (left) can easily be converted into stereo lithog-
raphy format and printed with high fidelity on a 3-D printer (right).
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