Tufts University Chapter of the Biomedical Engineering Society

A website for updates on news/events relating to BME at Tufts University

Category: Uncategorized (page 1 of 4)

Lab Tour and Minute to Win It

Thanks to everyone who came out to our Lab Tour event and Minute to Win It last week! Minute to Win it got very competitive as always and the lab tour was super interesting and insightful! Stay tuned for many more BMES events coming up in the rest of April!


bme1 bme2 bme3 bme4

Research Post: Senior Jaclyn Foisy in Professor Kuo’s Lab

Our next BMES research post highlights the work of senior Jaclyn Foisy! Read about some of the super interesting work that she has been involved in at Tufts and get a sense for how other BME students are pursuing their goals in the lab. Some pretty awesome stuff!
From Jaclyn:
For the majority of my time at Tufts, I have done research in the lab of Professor Kuo, who focused on Tissue Engineering/Regenerative Medicine. I worked for 2 years with Ava Sanayei and several graduate students and post-docs who were aiming to gain a better understanding of how embryonic tendon cells have scarless healing abilities. We started by characterizing physical differences between embryonic and postnatal (representing the adult phenotype that heal with significant scarring and decreased functionality) tendon cells. Differences included proliferation rate, gene transcription, and protein production, focusing on genes and proteins that have been implicated in being involved in the healing process. Following this, we worked on developing a mechanical bioreactor that would be able to apply a static load to embryonic tendons so that the mechanical properties of these tiny tendons could be determined. The device was designed in Solidworks and assembled using 3D printed acrylic pieces along with stainless steel screws. Finally, we needed a method to analyze the accuracy of the device (was it actually putting the amount of strain on the tendon that we told it to?). To accomplish this, we developed a Matlab program that could analyze a video of a tendon being stretched by the bioreactor and optically determine the strain being applied to the tendon at any point in time.
For my senior design project, I joined a team in Professor Kaplan’s lab that is working to better characterize the progression of cyst formation in Polycystic Kidney Disease (PKD). Specifically, I am investigating the role of Ift88, a protein related to the cilia production, by using a transgenic cell line that has an inducible knockdown of Ift88. This project has included culturing the cells, knocking down the protein in half the samples, and then using fluorescence staining, H&E staining, and immunohistochemistry to compare the samples that lost the protein to the controls that did not undergo the knockdown. Preliminary results are showing that the samples that were knocked down form significantly different cystic structures than the controls.

EWeek Events

EWeek was a great time last week with both the BMES Trivia night and Internship panel! Thanks to all those who were able to stop by and hope everyone enjoyed the events and had the opportunity to learn something new!


BME Research Highlight: Zach Loewenstein

For the signal-processing portion of my individual research I am doing work in the Black Lab under the supervision of Lauren Baugh and Monique Foster; two graduate students from the Black Lab. Most of professor Black’s research has to do with the heart and how important physical stimuli are to the highly specialized tissues of the heart, even on a cellular level. For this particular project I’m working with a partner, Rosemary Soucy, to develop an algorithm that will allow us to visually measure the conduction speed through muscle tissue. Our Matlab program will also project a branching network over the video to show the directionality of his electrical activity. Lauren and Monique two have provided us with microscope video of muscle cells contracting in response to an electrical stimulus in the presence of a voltage sensitive fluorescent dye. The dye causes each cell to glow as it contracts because of the change in membrane potential that mediates the contraction. We were able to isolate the contracting cells in the image, and used our algorithm to monitor the changes fluorescence of the cells inside the approximately fixed locations of the cells in the field of view. Based on this we will be able to determine when cells contract relative to their neighbors. This will enable us to determine the speed that cells are triggering their neighboring cells to contract, and whether the branching pattern of this stimulation has any consistent organization. The purpose of this project is to develop visual methods for these types of measurements and to make complicated analysis of heart tissues simpler. This will make experiments in the Black Lab easier and more efficient.

This project was very different from most of the other work I’ve done at tufts because it was totally centered around Matlab. All of the data we used had already been collected, so the only part of the project I worked on was coding the algorithm. It was challenging to get comfortable with Matlab over the course of a few weeks, but the algorithm we’ve developed has been successful so far, and the coding has been a challenging and interesting change of pace.

BME Dinner

Here are some pics from the BME Department dinner at Nijiya from last week! Despite the unforeseen issue of too much sushi, the event went extremely well and students and professors had a great time!

bme1 bme2 bme3 bme4 bme5 bme6 bme7 bme8 bme9 bme10


BMES Calendar

Check out our calendar to stay up to date with upcoming events! The calendar will be updated throughout the semester as new events come up. Follow the link below to find the calendar.



BME Ice Cream Social

Thanks to everyone who came to the Ice Cream Social last week! Great to meet BME students from all classes and get ready for picking spring courses!

bme1 bme2 bme3 bme4 bme5 bme6 bme7

Research Posts

A new feature of the website will include monthly research posts that highlight the research of current tufts undergraduates/ graduate students. This is designed to build a greater understanding of what BME students on campus are working on and to see how they are getting active in the biomedical field. Check out the first post below!

Improved Wound Healing Through Electrical Stimulation

Yuki Ito (E16) and Watson Gifford (E15) are currently studying cutaneous wound healing on in vitro human skin equivalents (HSEs) to improve the overall wound healing process. They co-culture the HSEs with a silk scaffold soaked in fat with collagen, fibroblasts, and keratinocytes seeded on top of it. The three layers of the HSEs mimic the epidermal, dermal, and hypodermal layers of human skin in order to have as accurate a model of study as possible.
To induce a faster wound healing process with less scar tissue formation, they are developing an electrical stimulation (ES) device. This electrical stimulation device is a biocompatible device made of gold and parylene that applies a controlled electric field across wounds in order to enhance the cell’s natural bioelectrical signals. By adding an exogenous electric field to this otherwise slow process of wound healing, they plan to learn more about the process of wound healing in general. The long-term goal of their project is to allow people such as diabetics, chronic wound patients, and severe burn victims to heal their wounds that they could not otherwise heal themselves.



Also, thanks to all of those who came out to our BME Fall BBQ last week! Despite the need for a rain date we had a great showing and enjoyed some great food/ fun and games! Check out some pics from the event below.


bbq1 bbq2 bbq3 bbq4 bbq5

Community Day 2015




community day bme

Community day was a blast! Thanks to all of those who participated in the event. It’s always exciting to give kids a taste of how cool science is!

« Older posts