References
Anders, C. Niewoehner O., DuerstA. and Martin Jinek. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonucleaseNature 513, 569–573 (2014). Article PubMed
Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini L.A.. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res41,7429–7437 (2013). Article PubMed
Biertumpfel C., Yang, W., and Suck, D. Crystal structure of T4 endonuclease VII resolving a Holliday junction. Nature449, 616–620 (2007). Article PubMed
Bolotin A, Quinquis B, Sorokin A, & Ehrlich S.D. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology151, 2551–2561 (2005). Article PubMed
Cong L., Ran F.A., Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science339(6121), 819–823 (2013). Article PubMed
Deltcheva E, Chylinski K, Sharma C.M., Gonzales K, Chao Y, Pirzada Z.A., Eckert M.R., Vogel J, & Charpentier E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature471, 602-607 (2011). Article PubMed
Ebina H., Misawa N., Kanemura Y., Koyanagi Y. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep 3, 2510 (2013). Article PubMed
Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl Acad. Sci. USA 109, E2579–E2586 (2012). Article PubMed
Gilbert L, Larson M, Morsut L, Liu Z, Brar G, Torres S. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 154(2), 442-451 (2013). Article PubMed
Gorecka, K.M., Komorowska, W., and Nowotny, M. Crystal structure of RuvC resolvase in complex with Holliday junction substrate. Nucleic Acids Res. 41, 9945–9955 (2013). Article PubMed
Hsu, P.D., Lander, E.S., & Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262–1278 (2014). Article PubMed
Hu W, Kaminski R, Yang F, Zhang Y, Cosentino L, Li F, Luo B, Alvarez-Carbonell D, Garcia-Mesa Y, Karn J, Mo X, and Khalili K. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. PNAS111(31) 11461-11466 (2014). Article PubMed
Jansen R, Embden J. D.A.v., Gaastra W, & Schouls L.M. Identification of genes that are associated with DNA repeats in prokaryotes. Molecular Microbiology, 43(6), 1565-1575 (2002). Article PubMed
Jinek M., Jiang F., Taylor D.W., et al. . Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343, 1247997 (2014). Article PubMed
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J.A.,Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science337, 816–821 (2012). Article PubMed
Konermann S, Brigham M.D., Trevino A.E., Joung J, Abudayyeh O.O., Barcena, C. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature, advance online publication (2014). Article PubMed
Li C.L., Hor, L.I., Chang, Z.F., Tsai, L.C., Yang, W.Z., and Yuan, H.S. DNA binding and cleavage by the periplasmic nuclease Vvn: a novel structure with a known active site. EMBO J.22, 4014–4025 (2003). Article PubMed
Liang F, Han M, Romanienko P.J., & Jasin M. Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proceedings of the National Academy of Sciences, 95(9), 5172-5177 (1998). Article PubMed
Mali P, Aach J, Stranges P.B., Esvelt K.M., Moosburner M, Kosuri S, . . . Church, G. M. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotech, 31(9), 833-838 (2013). Article PubMed
Mali P, Esvelt K.M. & Church G.M. Cas9 as a versatile tool for engineering biology. Nature Methods10, 957–963 (2013). Article PubMed
Mali P, Yang L, Esvelt K.M., Aach J, Guell M, DiCarlo J.E., Norville J.E., Church G.M. RNA-Guided Human Genome Engineering via Cas9. Science339(6121), 823-826 (2013). Article PubMed
Marraffini, L. A., & Sontheimer, E. J. Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature 463 (7280), 568-571 (2010). Article PubMed
Mojica F.J.M., Díez-Villaseñor C, Soria E., & Juez G. Biological significance of a family of regularly spaced repeats in the genomes of archaea, bacteria and mitochondria. Molecular Microbiology, 36(1), 244-246 (2000). ArticlePubMed
Mojica F.M., Díez-Villaseñor C, García-Martínez J, & Soria, E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of Molecular Evolution 60(2), 174-182 (2005). ArticlePubMed
Mojica F.J.M., Díez-Villaseñor C, García-Martínez J, & Almendros C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology155, 733–740 (2009). Article PubMed
Nishimasu H., Ran, F.A., Hsu, P.D., et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156(5), 935–949. Article PubMed
Nuñez J.K., Kranzusch P.J., Noeske J., Wright A.V., Davies C.W., & Doudna, J.A. (2014). Cas1–Cas2 complex formation mediates spacer acquisition during CRISPR/Cas adaptive immunity. Nat Struct Mol Biol, 21(6), 528-534 (2014). ArticlePubMed
Pommer A.J., Cal S, Keeble A.H., et al. Mechanism and cleavage specificity of the H-N-H endonuclease colicin E9. J. Mol. Biol.314(4), 735–749 (2001). Article PubMed
Pourcel C, Salvignol G, Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology151, 653–663 (2005). Article PubMed
Qi L, Larson M, Gilbert L, Doudna J, Weissman J, Arkin A, and Lim, W. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152(5), 1173-1183 (2013). Article PubMed
Ran F, Hsu P, Lin C, Gootenberg J, Konermann S, Trevino A, . . . Zhang F. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 155(2), 479-480(2013). Article PubMed
Sander, J.D., & Joung, J. K. CRISPR-cas systems for editing, regulating and targeting genomes. Nat. Biotech. 32, 347–355 (2014). Article PubMed
Sternberg S.H., Redding S, Jinek M, Greene E.C., Doudna J.A. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507(7490), 62–67 (2014). Article PubMed
Tang T, Bachellerie J, Rozhdestvensky T, Bortolin M, Huber H, Drungowski M., . . . Hüttenhofer, A. Identification of 86 candidates for small non-messenger RNAs from the archaeon archaeoglobus fulgidus.Proceedings of the National Academy of Sciences 99(11), 7536-7541 (2002). Article PubMed
Tang T, Polacek N, Zywicki M, Huber H, Brugger K, Garrett R, . . . Hüttenhofer A. Identification of novel non-coding RNAs as potential antisense regulators in the archaeon sulfolobus solfataricus. Molecular Microbiology 55(2), 469-481 (2005). Article PubMed
There’s definately a great deal to find out about this subject.
I really like all the points you made.
Where can I order the pills
Needed to write you a bit of note to be able to thank you very much over again for those beautiful techniques you’ve featured on this site. This has been surprisingly open-handed with you to give publicly all a lot of people would’ve supplied as an e-book to end up making some profit on their own, chiefly since you might have done it if you decided. These suggestions also acted as a great way to fully grasp that other people have the same keenness much like my own to learn lots more regarding this issue. Certainly there are lots of more fun instances ahead for many who read through your blog post.
Best Regards
Thanks for all the great post
Very interesting post. This is my first time visit here. I found so many interesting stuff in your blog especially its discussion. Thanks for the post!