Dissolvable Micro Mirrors Enhance Imaging, Administer Heat, Deliver and Monitor Drugs

Tufts University School of Engineering researchers have demonstrated silk-based implantable optics that offer significant improvement in tissue imaging while simultaneously enabling photo thermal therapy, administering drugs and monitoring drug delivery. The devices also lend themselves to a variety of other biomedical functions.

Microscopic image of a silk optical implant embedded with gold nano particles. When implanted in tissue and illuminated with green laser light, the particles converted light to heat, turning the reflector into a thermal therapy to control bacterial infection or kill malignant cells. Photo: Fiorenzo Omenetto

Biodegradable and biocompatible, these tiny mirror-like devices dissolve harmlessly at predetermined rates and require no surgery to remove them.

The technology is the brainchild of a research team led by Fiorenzo Omenetto, Frank C. Doble Professor of Engineering at Tufts. For several years, Omenetto; David L. Kaplan, Stern Family Professor of Biomedical Engineering and Biomedical Engineering chair, and their colleagues have been exploring ways to leverage silk’s optical capabilities with its capacity as a resilient, biofriendly material that can stabilize materials while maintaining their biochemical functionality.

The technology is described in the paper “Implantable Multifunctional Bioresorbable Optics,” published in the Proceedings of the National Academy of Sciences online Early Edition the week of November 12, 2012.

“This work showcases the potential of silk to bring together form and function. In this case an implantable optical form — the mirror — can go beyond imaging to serve multiple biomedical functions,” Omenetto says.

Video: silk optical implant embedded with gold nano particles

Leave a Reply

Your email address will not be published. Required fields are marked *