Friday, 29 of August of 2014

Category » Chemical and Biological Engineering

Faculty Receive NSF Major Research Instrumentation Grants

semiconductor

Advanced semiconductor made in the Vandervelde REAP lab.

John A. and Dorothy M. Adams Faculty Development Professor Tom Vandervelde received a $1M grant for equipment crucial in the development of solar cells, infrared cameras, high-speed (100+GHz) circuits, lasers, and LED lighting. He received a Major Research Instrumentation award from the National Science Foundation to build a multi-chamber molecular beam epitaxy system, which enables the creation of novel semiconductor materials and devices.

Associate Professor and Chair Kyongbum Lee and colleagues in the Department of Biomedical Engineering received a $338K grant for the acquisitions of a state-of-the-art mass spectrometry (MS) system for a range of metabolomics and proteomics applications. Mass spectrometry has emerged as the technology of choice for workflows seeking to identify, detect, and/or quantify metabolites and other small molecules as well as proteins and peptides in complex biological samples.


Prof Panzer Explains Solar Energy Storage Options

Assistant Professor Matthew Panzer of the Department of Chemical and Biological Engineering wrote an “Ask the Expert” piece for TuftsNow on how options for storing solar energy.

Solar cells, also known as photovoltaics, convert sunlight directly into electricity. Photo: © Elena Elisseeva/DepositPhoto

“When the sun shines, we can store the electricity generated by solar cells or steam-driven turbines by using batteries (technically energy stored as electrochemical potential) or supercapacitors (energy stored in an electric field, due to the spatial separation of positive and negative charges). Then we can release electrical energy when it is cloudy or at night.

There are at least two other ways to store solar energy for use later. First, the thermal energy of concentrated sunlight can be stored in the heat capacity of a molten salt (the liquid form of an ionic compound like sodium chloride) at a high temperature. When electricity is needed later, heat is transferred from the molten salt to water, using a heat exchanger to generate steam to drive a turbine.”

This story first appeared in TuftsNow, May 13, 2013.