Thursday, 18 of December of 2014

Category » Faculty

Silk-Based Surgical Implants an Orthopedic Innovation

silkscrewThe latest silk-inspired innovation from the lab of biomedical engineering Professor David Kaplan is receiving media attention: silk-protein surgical screws that could transform the way we heal broken bones. Researchers from Kaplan’s lab and Beth Israel Deaconess Medical Center published their findings in the journal Nature Communications this March.

Surgical screws and plates, or “fixation devices” are used to repair fractured bones and are often made of metal alloys or synthetic polymers. However, metal implants place undue stress on the bone, are prone to infection, and must be surgically removed from the body once a fracture has healed. Synthetic screws are designed to be absorbed by the body, but they can be difficult to set and may cause inflammation.

The research team manufactured plates and screws from the silk protein produced by the Bombyx mori (B. mori) silkworm cocoons. A silk solution was cured into molds that produced easily machinable plates and screws. The silk screws are self-tapping, an improvement from conventional resorbable screws that require careful drilling of a screw hole before insertion of the hardware. In vivo tests showed the screws remain fixed in the bone at four and eight weeks with notable improvements in the healing and resorbtion process.

Professor Kaplan told BBC News: “The future is very exciting. We envision a whole set of orthopaedic devices for repair based on this – from plates and screws to almost any kind of device you can think of where you don’t want hardware left in the body.”

Some added benefits to the silk technology over metal fixation devices include decreased sensitivity to the cold and zero interference with X-ray technology or metal detectors. “One of the other big advantages of silk is that it can stabilize and deliver bioactive components, so that plates and screws made of silk could actually deliver antibiotics to prevent infection, pharmaceuticals to enhance bone regrowth and other therapeutics to support healing,” says Kaplan.

This research was supported by the National Institutes of Health (EB002520).

More coverage on this story: TuftsNow, New Scientist, The Telegraph, and Popular Science


Faculty Receive NSF Major Research Instrumentation Grants

semiconductor

Advanced semiconductor made in the Vandervelde REAP lab.

John A. and Dorothy M. Adams Faculty Development Professor Tom Vandervelde received a $1M grant for equipment crucial in the development of solar cells, infrared cameras, high-speed (100+GHz) circuits, lasers, and LED lighting. He received a Major Research Instrumentation award from the National Science Foundation to build a multi-chamber molecular beam epitaxy system, which enables the creation of novel semiconductor materials and devices.

Associate Professor and Chair Kyongbum Lee and colleagues in the Department of Biomedical Engineering received a $338K grant for the acquisitions of a state-of-the-art mass spectrometry (MS) system for a range of metabolomics and proteomics applications. Mass spectrometry has emerged as the technology of choice for workflows seeking to identify, detect, and/or quantify metabolites and other small molecules as well as proteins and peptides in complex biological samples.


Aldridge Wins NIH New Innovator Award

Bree Aldridge

Bree Aldridge, Assistant Professor of Molecular Biology & Microbiology

Assistant Professor Bree Aldridge has received a 2013 National Institutes of Health Director’s New Innovator Award. Aldridge is an assistant professor in molecular biology and microbiology at Tufts University School of Medicine, a member of the Molecular Microbiology and Immunology program faculties at the Sackler School of Graduate Biomedical Sciences at Tufts, and adjunct assistant professor in biomedical engineering. She has been awarded a five-year, $1.5 million grant for her research focused on improving drug treatments for tuberculosis.

Aldridge’s research addresses a major obstacle in controlling tuberculosis, which is the lengthy multi-drug therapy currently required to effectively cure the disease. Due to the prolonged treatment, adherence to the drug therapy can be difficult. In addition, when these drugs are misused or mismanaged, multi-drug resistance can develop. To improve health outcomes for patients, and reduce the emergence of drug-resistant strains of the disease, she hopes to shorten and simplify treatments for tuberculosis. The Aldridge lab includes a multidisciplinary team of researchers who combine molecular approaches with mathematical modeling to study the bacterium that causes tuberculosis.


Kaplan’s Team On Board for Continued Regenerative Medicine Research

Today, the Institute for Regenerative Medicine at Wake Forest University School of Medicine announced that the second phase of the Armed Forces Institute of Regenerative Medicine (AFIRM) project will move ahead with involvement from researchers on Stern Family Professor David Kaplan’s biomedical engineering team. The five-year, $75 million federally funded project focuses on applying regenerative medicine to battlefield injuries.

Anthony Atala, M.D., director of the Wake Forest Institute for Regenerative Medicine, is the lead investigator for AFIRM-II. He will direct a consortium of more than 30 academic institutions, including Tufts School of Engineering, and industry partners.

In the first phase of AFIRM, which began in 2008, Kaplan’s group looked at soft tissue reconstruction and peripheral nerve repair research. During this phase, Kaplan will focus on muscle regeneration.


Proof of Concept Robotic Programming Lends A Stress-Free Hand

Summer Scholar Chris Shinn, E15, hopes to reduce musculoskeletal injuries in the workplace through human-robot interaction.

The intended application is in diagnostic laboratories to reduce repetitive motion injuries. Currently lab techs must open and close hundreds of jars every day. Every year thousands of man-hours are lost due to such injuries, and costing employers and employees alike millions of dollars. While there’s plenty of room for improving the speed, Shinn’s work demonstrates a proof of concept for human-friendly robots such as Baxter to use tools to extend their utility and to integrate them into the work flow of laboratories and similar workplaces.

This video from Chris Shinn in the Human Factors program in the Department of Mechanical Engineering shows ongoing research with the Baxter robot. Located in the Center for Engineering Education and Outreach (CEEO), Baxter opens and closes a specimen jar using a tool to overcome positioning uncertainty in its “hands.” Another special adapter on the other hand is employed to operate a pipette.


Jacob Comments on Interface Technology for Tech Review

In an article published in MIT Tech Review, Professor Rob Jacob in the Department of Computer Science commented on a new 3D interface called “Leap Motion” that allows users to gesture to interact with their computers.

According to the company, since the launch of the product in late July, users have downloaded more than 1 million apps that connect with the technology.

MIT Tech Review reports, “Yet after one month and a raft of ‘meh’ product reviews citing problems like difficulty controlling apps and tired arms, the sardine-can-sized gadget—which connects to a computer’s USB port and tracks the movement of your hands and fingers as they move above its sensor—seems to have lost its steam.”

“Things involving human-computer interfaces often move extremely slowly. It may take a while before the Leap reaches its full potential,” Jacob, told Tech Review.

This story was first reported in MIT TechReview, August 29, 2013, by Rachel Metz.


Engineers Develop Early Warning System for Cholera Epidemics

In two recently published papers, School of Engineering researchers have established new techniques for predicting the severity of seasonal cholera epidemics months before they occur and with a greater degree of accuracy than other methods based on remote satellite imaging. Taken together, findings from these two papers may provide the essential lead time to strengthen intervention efforts before the outbreak of cholera in endemic regions.

Cholera, caused by the bacteria Vibrio cholerae, is rare in the United States and other industrialized nations. However, globally, cholera cases have increased steadily since 2005 and the disease still occurs in many places including Africa, Southeast Asia, and Haiti. According to the World Health Organization, there are an estimated 3–5 million cholera cases every year, more than 100,000 cases are fatal. Image credit: CDC.gov

The team, led by Shafiqul Islam, professor of civil and environmental engineering, used satellite data to measure chlorophyll and algae, organic substances, and flora that also support growth of the cholera bacteria. Using satellite images, the researchers created a “satellite water marker” (SWM) index to estimate the presence of organic matter including chlorophyll and plankton based on wavelength measurements.

In a separate paper published online in the journal Environmental Modeling and Software, ahead of the September 1 print edition, Antarpreet Jutla, EG13, Islam, and Ali Akanda, EG13, showed that air temperature in the Himalayan foothills can also be a factor in predicting spring cholera.

“A Water Marker Monitored by Satellites to Predict Seasonal Endemic Cholera,” Antarpreet Jutla, Ali Shafqat Akanda, Anwar Huq, Abu Syed Golam Faruque, Rita Colwell, and Shafiqul Islam, Remote Sensing Letters, published on line before print June 3, 2013, Vol. 4, No. 8, 822–831.http://dx.doi.org/10.1080/2150704X.2013.802097

The research reported in this paper was supported, in part, from National Institutes of Health (NIH) grants 1RCTW008587-01 and 2R01A1039129-11A2.

“A Framework for Predicting Endemic Cholera Using Satellite Derived Environmental Determinants,” Antarpreet S. Jutla, Ali S. Akanda, Shafiqul Islam, Environmental Monitoring and Software, published online before print http://dx.doi.org/10.1016/j.envsoft.2013.05.008

The research reported in this paper was supported through NIH funding under award number 1RCTW008587-01. Dr. Jutla acknowledges the support from Statler College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV.


Entrepreneurial Engineers Design Water-Saving, Color-Changing Shower head

Engineers Brett Andler, E13, Joo Kang, A13, Sam Woolf, E13, and Tyler Wilson, E13, designed a water-saving, color-changing showerhead.

The recent graduates worked on their project, Uji, as part of their senior capstone thesis with Senior Lecturer Gary Leisk. The Uji team members were winners in the 2013 $100K business plan competition hosted by Tufts Gordon Institute.

The shower turns from green to red after seven minutes of use. In initial reports submitted to the School of Engineering, the team determined that, on average the Uji showerhead, will shorten shower times by over 10 percent. This estimate is now being reported as a 12 percent decrease.

The team and the technology was featured on National Public Radio’s weekly innovation blog  “All Tech Considered”  and was subsequently featured by FastCompany, and USA Today.

The team is now piloting the technology on university campuses. The Uji website claims that Uji showerheads count as low flow showerheads enabling universities to earn LEED green credits toward certification.

Follow Uji on Twitter (@UjiShower) to keep up with the team.


Silkworms Stitch Together Engineering and Art

Professor Fiorenzo Omenetto in the Department of Biomedical Engineering collaborated with the Mediated Matter Research Group at the MIT Media Lab to produce the Silk Pavilion–a stunning geometric structure constructed by silkworms and guided by engineers.

The Silk Pavilion explores the relationship between digital and biological fabrication on product and architectural scales.

SILK PAVILION from Mediated Matter Group on Vimeo.

The primary structure was created of 26 polygonal panels made of silk threads laid down by a CNC (Computer-Numerically Controlled) machine. Inspired by the silkworm’s ability to generate a 3D cocoon out of a single multi-property silk thread (1km in length), the overall geometry of the pavilion was created using an algorithm that assigns a single continuous thread across patches providing various degrees of density.

Overall density variation was informed by the silkworm itself deployed as a biological “printer” in the creation of a secondary structure. A swarm of 6,500 silkworms was positioned at the bottom rim of the scaffold spinning flat non-woven silk patches as they locally reinforced the gaps across CNC-deposited silk fibers. Following their pupation stage the silkworms were removed. Resulting moths can produce 1.5 million eggs with the potential of constructing up to 250 additional pavilions.

Affected by spatial and environmental conditions including geometrical density as well as variation in natural light and heat, the silkworms were found to migrate to darker and denser areas. Desired light effects informed variations in material organization across the surface area of the structure. A season-specific sun path diagram mapping solar trajectories in space dictated the location, size and density of apertures within the structure in order to lock-in rays of natural light entering the pavilion from South and East elevations. The central oculus is located against the East elevation and may be used as a sun-clock.

Parallel basic research explored the use of silkworms as entities that can “compute” material organization based on external performance criteria. Specifically, we explored the formation of non-woven fiber structures generated by the silkworms as a computational schema for determining shape and material optimization of fiber-based surface structures.

Research and Design by the Mediated Matter Research Group at the MIT Media Lab in collaboration with Prof. Fiorenzo Omenetto and Dr. James Weaver (WYSS Institute, Harvard University). Mediated Matter researchers include Markus Kayser, Jared Laucks, Carlos David Gonzalez Uribe, Jorge Duro-Royo and Neri Oxman (Director).


Trimmer to Head New Journal on Soft Material Robotics

Barry Trimmer heads up a new journal, SoRo, focusing on soft material robotics.

Barry Trimmer heads up a new journal, SoRo, focusing on soft material robotics.

Barry Trimmer, Henry Bromfield Pearson Professor of Natural Sciences, adjunct professor of biomedical engineering, and Director of the Neuromechanics and Biomimetic Devices Laboratory, has been named editor-in-chief of a new journal dedicated to soft material robotics.

The new journal, called Soft Robotics (SoRo), will be published quarterly online with Open Access options and in print. SoRo combines advances in biomedical engineering, biomechanics, mathematical modeling, biopolymer chemistry, computer science, and tissue engineering to present new approaches to the creation of robotic technology and devices that can undergo dramatic changes in shape and size in order to adapt to various environments.

“The next frontier in robotics is to make machines that can assist us in everyday activities, at home, in the office, in hospitals, and even in natural environments,” says Trimmer director of the Soft Material Robotics | IGERT doctoral program at Tufts. “Soft Robotics provides a forum, for the first time, for scientists and engineers across diverse fields to work together to build the next generation of interactive robots. This journal provides biologists, engineers, materials specialists, and computer scientists a common meeting place, and we are very excited about this new forum.”

This article first appeared as a press release from Mary Ann Liebert, Inc. publishers, July 18, 2013.