Tuesday, 24 of November of 2015

Category » Research News

Pennell Comments on Metabolomics Methods and the ‘Exposome’ in CE&N

Kurt D. Pennell

In an article in Chemical and Engineering News, Professor and Chair Kurt Pennell commented on how research in metabolomics methods can help address the “exposome”: the sum of environmental exposures a person experiences from conception until death. “Pennell’s goal is to relate exposome information to genetic information. In one study, his group is collaborating with researchers at Children’s Hospital in Boston to relate chemical exposure and whole-genome sequencing of mothers and children with autism spectrum disorder.”

Femtosecond Lasers Shape Biomaterials for Tissue Engineering

Fiorenzo Omenetto

As Optics and Photonics News states, “Current methods for shaping biomaterials, including soft- and photolithography, are limited to two dimensions and don’t offer much in the way of customization.” Tufts researchers, led by Associate Dean for Research and Professor, Fiorenzo Omenetto, “used low-energy (< nJ) femtosecond laser pulses to create 2-D and 3-D patterns in soft, transparent silk-protein hydrogels. They were able to achieve micromachining at a depth of 1 cm—reportedly more than 10 times deeper than any other biomaterial—at a lateral resolution of 5 µm.”

10 Groundbreaking Innovations That Are Changing How We Live

Details Daily Blog includes Tuft’s University discovery of a poly-silk bionink on their list of “10 Groundbreaking Innovations Changing How We Live”. This new discovery “will make printing tissues, organs, bone, and other organic materials a real possibility.”

Researchers develop 3D bone marrow that produces functional human platelets ex vivo

Biomedical engineering researches, funded by the National Institute of Biomedical Imaging and Bioengineering have “successfully developed a 3-dimensional (3D) tissue-engineered model of bone marrow that can produce functional human platelets outside the body (ex vivo)”, Health Medicine Network writes.


New Way To Repair Nerves

Qiaobing Xu

Tuft’s University biomedical engineers have been commended on Technology Networks article for their publication of  the “first report of a promising new way to induce human mesenchymal stem cells to differentiate into neuron-like cells:treating them with exosomes.” Tufts Assistant Professor, Qiaobing Xu, is the paper’s senior and corresponding author.


Biopsies Without Knives

Irene Georgakoudi

Irene Georgakoudi, associate professor of biomedical engineering at Tufts University is researching methods “to diagnose cancer at a cellular level, well before it grows into a visible lesion or tumor.”, shares TuftsNow“Although her techniques aren’t yet ready for clinical use, Georgakoudi is hopeful they could make a dramatic impact on the way cancers are identified—turning a dreaded disease into something that can be managed and treated before it spirals out of control.”

Xu Wins NSF Award to Find New Ways to Deliver Drugs Directly into Cells


Qiaobing Xu

Qiaobing Xu

Qiaobing Xu, Ph.D., an assistant professor of biomedical engineering in Tufts University School of Engineering, has received a $498,899 Faculty Early Career Development (CAREER) award from the National Science Foundation (NSF) to fund research into a new way to deliver protein-based cancer-fighting drugs and other therapeutics into cells.

Such an approach would enable drugs to destroy cancerous growth more effectively than existing treatments and target other diseases traditionally considered “undruggable.”

Chemotherapy drugs attack all actively dividing cells—healthy and diseased alike—often causing significant side effects in the patients. New protein-based therapy, such as cytokines, monoclonal antibodies and growth factors, allow for highly targeted treatment. The problem is that, unlike compounds used in chemotherapy, proteins are too large to easily cross the cell membrane to penetrate into the cell cytoplasm. Instead, most of these protein therapies work by targeting specific receptors on the outside surface of diseased cells.

The NSF program supports junior faculty who exemplify the role of teacher-scholars through outstanding research, excellent education and the integration of education and research.

Xu is developing a method way to transport the protein inside the cell safely and efficiently by binding it with a nanoparticle that can cross the cell membrane and, when safely inside, release the protein. In his approach, the protein is first chemically altered to give it a negative charge and then bound to a positively charged nanoparticle composed of lipids. The lipids then pass through the cell membrane, which is naturally negatively charged.

– See more at: http://now.tufts.edu/news-releases/tufts-engineer-wins-nsf-award-find-new-ways-deliver-drugs-directly-cells#sthash.WYn7hmN5.dpuf

Miller and Saibaba Featured on Cover of Inverse Problems

Eric Miller

Eric Miller

The research of Professor and Chair Eric Miller (ECE) and postdoc Arvind Saibaba is featured on the cover of the January issue of the journal Inverse Problems. The work, in collaboration with Professor Peter Kitanidis at Stanford University, develops computationally efficient methods for estimating the state of large-scale, noisy, and dynamical systems, opening up possibilities for real-time monitoring and control of processes in fields ranging from medicine and biology to subsurface remediation, carbon sequestration, and numerical weather prediction.



Fig. 8 Variance of the computed solution at time 30 h after injection computed on the grid of size.

New Catalysts May Provide Path to Low-Cost Production of Future Fuels

Maria Flytzani-Stephanopoulos

Maria Flytzani-Stephanopoulos

New catalysts designed by Tufts University School of Engineering researchers and collaborators from other university and national laboratories have the potential to greatly reduce processing costs in future fuels, such as hydrogen. The catalysts, composed of single gold atoms bound by oxygen to sodium or potassium atoms and supported by a wholly unique structure comprised of non-reactive silica materials, demonstrate comparable activity and stability with current catalysts used in producing highly purified hydrogen.

The work, which appears in Science Express, points to new avenues for producing single-site supported gold catalysts that could produce high-grade hydrogen for cleaner energy use in fuel-cell powered devices, including vehicles.

“In the face of precious metals scarcity and exorbitant fuel-processing costs, these systems are promising in the search for sustainable global energy solutions,” says senior author Maria Flytzani-Stephanopoulos, the Robert and Marcy Haber Endowed Professor in Energy Sustainability.

The paper appeared in the November 27 edition of Science Express. (doi:10.1126/science.1260526). This research is primarily supported by the U.S. Department of Energy under grant # DE-FG02-05ER15730.

Image from Science Express, Nov 27

Center for Applied Brain and Cognitive Sciences Launched

Matthias Scheutz

Matthias Scheutz

Researchers from Tufts University and the U.S. Army Natick Soldier Research, Development, and Engineering Center (NSRDEC) are joining forces to advance our understanding of how people think, function, and interact in demanding environments. This new center represents a collaborative partnership in cognitive science research co-directed and co-managed by researchers from both institutions.

“We hope to increase understanding of how individuals and teams adapt and sustain performance in high-stakes environments,” says Holly A. Taylor, a professor of psychology at Tufts School of Arts and Sciences, an adjunct professor in the Department of Mechanical Engineering, and lead investigator from the Tufts team.

Matthias Scheutz, a professor of computer science at Tufts School of Engineering and co-principal investigator on the center grant, brings yet another dimension to the research when attempting to understand how people interact not only with each other in teams, but with potential robotic partners.

“In the same scenario of searching for an injured person, imagine now that a robot is the navigator,” says Scheutz, “and the rest of its human teammates are interacting with that robot from a safe distance out of the fray. How might that team work together in a high-stress environment? How could we improve that collaboration?” These questions need answering as robots become an ever-increasing presence on the battlefield and in everyday life, adds Scheutz who directs the Human-Robot Interaction Lab.

Read more about the launch of the center.

 Center for Applied Brain and Cognitive Sciences