Changing Nature of Brahmaputra Hydrograph

Dinesh Prashar Civil and Environmental Engineering, Tufts University, MA, USA.

- Brahmaputra is one of the largest rivers in the world in terms of discharge.
- Drainage area of 530,000 sq km extends into China (50.5%), India (33.6%), Bhutan (7.8%), and Bangladesh (7.8%).
- 90% of the precipitation and flow occurs in the four monsoon months (Jul—Oct).
- Winters (Nov-Mar) correspond to low flow months.
- Last decade has seen a significant rise in winter flow.

Study Logistics

Moisture sources for Brahmaputra

Q = R + M

Q = Flow in Brahmaputra

R = Rainfall Runoff

M = Snowmelt Water

- Likely causes of the change
 - Increase in winter precipitation

Increase in temperature

- Increased precipitation will immediately show up in the river.
- Effects of temperature rise Increasing snowmelt

rain instead of snow

Brahmaputra Watershed 651,334 sq.Km Basin Area 174 per sq.km Population density **Large Cities** Sunderbans (21%) Wetlands 29% Cropland Irrigated Cropland 73% Lost forest area 29% Grassland Cities (population > 100,000 16% Shrub

None

Major dams

- Winter precipitation over the watershed shows no increase.
- Temperature Shows a definite increasing trend after 1998.
- Four of five warmest years on record occurred after 1998.
- Average winter temperature exceeded freezing point for the first time in 2005 and again in 2007.

Remote Sensing

- Used to establish a link between warming and snow melt.
- Overcomes the lack of data sharing by riparian countries.
- Inaccessible areas in The Himalayas make ground measurements difficult.
- Large study area and high albedo of snow make this an ideal avenue for application of remote sensing.
- MODIS snow products were used to obtain the snow covered areas in the region.

Snow Cover

- Peak snow cover now occurs in Sep-Dec instead of Feb-Mar.
- Snowmelt historically began in Feb-Mar but now it begins around Nov.
- Resulting melt water is causing an increase in Brahmaputra flow in winters.

Summary

- Increased winter flow in Brahmaputra can be attributed to snowmelt induced due to increased temperature.
- Remote sensing data affirms the above conclusion as it indicates that snowmelt is starting earlier in the Himalayas compared to earlier years.
- Remote sensing proved to be a useful tool in the absence of ground data and a lack of cooperation among political entities in the Brahmaputra basin on data sharing.

Limitations and Future Work

- Snow Water Equivalent and snow depth are important factors on which runoff depends.
- Future work must take into account these two factors to obtain a more accurate assessment of the impacts of warming in the region.

Acknowledgements: I am thankful to Dr. Eman Ghoneim for her guidance and my colleague Mr. Antarpreet Jutla for his support on this project.

Modified Landscape