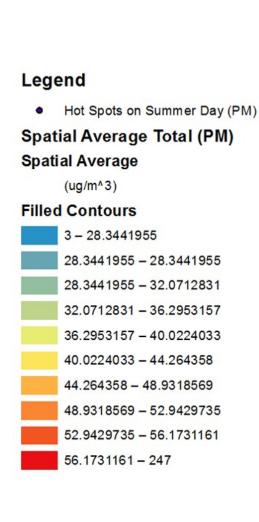

Air Pollution and Socioeconomic Traits in Somerville, MA

Introduction

Air pollution has been a major issue in urban centers around the world ever since the start of the industrial revolution. Nowadays, the modern internal combustion engine produces a plethora of air pollutants, including, but not limited to particulate matter 2.5 microns in diameter $(PM_{2,5})$ and nitrogen dioxide (NO_2) .

These air pollutants have become an issue in urban neighborhoods, as wind can suspend large amounts of pollutants in the air for extended durations of time. Numerous studies have shown that these air particles can cause lasting health issues in humans.


For my study I analyzed pollution data gathered in the City of Somerville, Massachusetts. In detail, I focused my study area on the Ten Hills neighborhood, located next to interstate 93 and the Mystic River. Figure 1 shows a map of the study area.

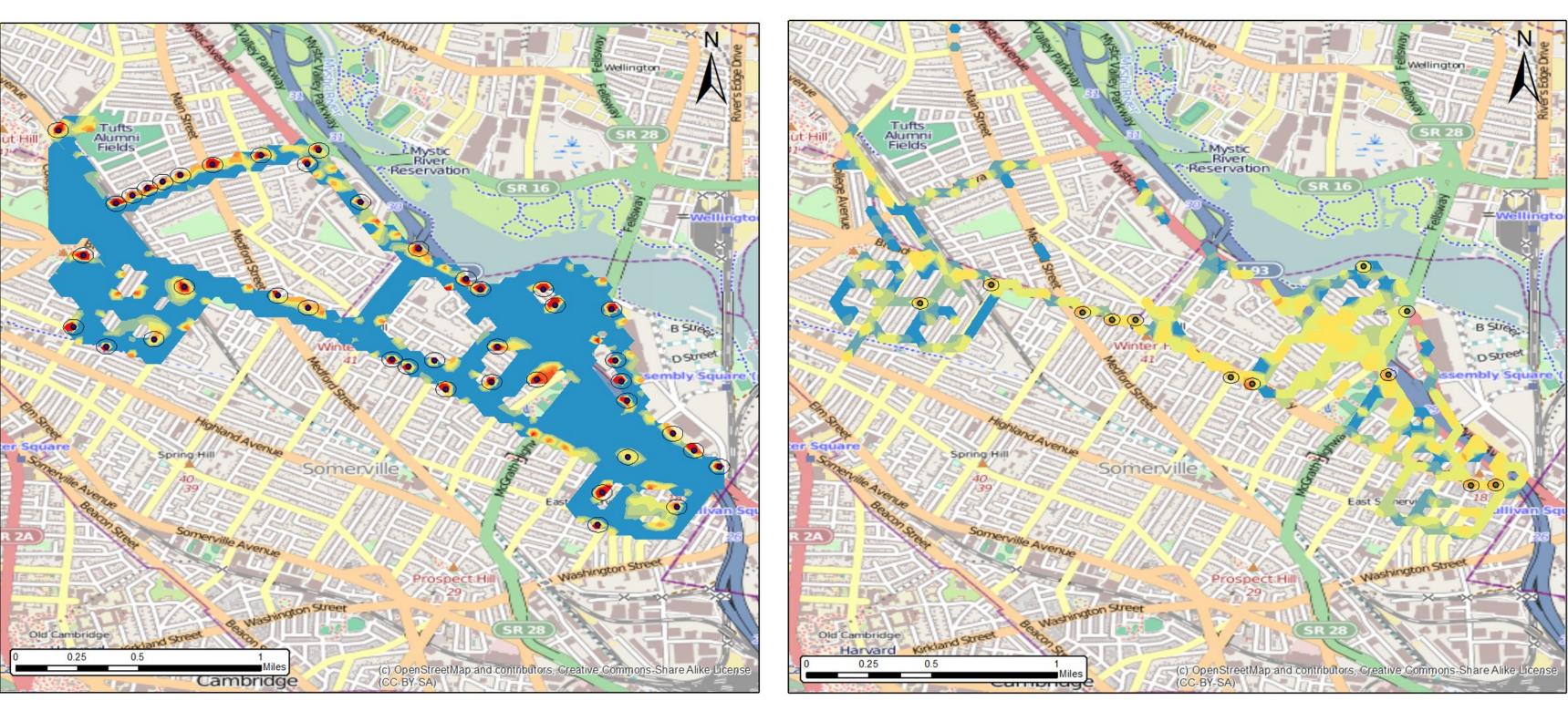


Figure 1: Map of Study Area

The motivation behind my study is to compare existing air pollution concentration data with socioeconomic data from the United States 2010 Census and determine whether there is a correlation between air pollution concentration and socioeconomic characteristics of neighborhoods.

I predict that neighborhoods near areas with high concentrations of air pollution will have different socioeconomic properties than neighborhoods near areas with low concentrations of pollution.

Air Pollution Data

The air pollution data in my study came from the Community Assessment of Freeway Exposure and Health (CAFEH) Study carried out by Tufts University. I used PM_{2.5} and NO₂ data to carry out my analysis.

The CAFEH study gathered hundreds of thousands of data points in total. I narrowed their dataset down to data collected during the day (9 AM to 4 PM) in the summer (June 20 to September 22).

Table 1 shows the statistical characteristics of each of the aforementioned datasets.

Methodology

The majority of my study is based off of "highrisk areas", determined through analyzing air pollution concentration data. I used kernel smoothing to produce a spatial average map for both PM_{2.5} and NO₂. I then used EPA's 24hour exposure threshold as the boundary between high concentration and low concentration of pollution.

Next, I created point features for all areas of high concentrations of PM_{2.5} and NO₂. Furthermore, because air pollutants can be carried by the wind, I used the buffer tool to create buffers around each point-source. These buffer zones create my high-risk areas. Figures 2

Poster by Qingchuan Liu Civil and Environmental Engineering 187—Geographic Information Systems Air pollution data provided by Professor John Durant of Tufts University US 2010 Census data provided by MassGIS Road map data provided by Esri 12/17/2012

Figures 2 and 3: Buffer Zones and Spatial Average Maps for PM_{2.5} and NO₂ respectively

Table 1: Statistical Characteristics of Air Pollution Data

	PM _{2.5} (µg/m ³)	
	Total	Summer Day
Data Points	30,205	4,220
Average	21.74	27.55
Standard Deviation	15.86	17.40
Skew	Positive	Positive
		NO ₂ (ppb)
	l Total	NO ₂ (ppb) Summer Day
Data Points		
Data Points Average	Total	Summer Day
	Total 58,809	Summer Day 4,616

and 3 show the high-risk areas for PM_{2.5} and

Next, I used the query tool to select blocks

tersects my high-risk areas. These are my

sect points of low pollution concentration,

from my US 2010 Census data layer that in-

high-risk blocks. I also queried for blocks that

do not intersect high-risk areas but do inter-

Finally, I compared the statistical analysis of

these blocks to determine whether there is a

side the high-risk areas versus blocks in the

difference in socioeconomic traits of blocks in-

 NO_2 along with their buffer zones.

these are my low-risk blocks.

low-risk areas.

As seen in Table 2, blocks lying within the high-risk area for PM_{2.5} has a 13.3 percent higher population density than blocks lying within the low-risk area.

The same trend applies for the average minority ratio, there is a 22.1 percent higher minority ratio in high-risk blocks.

Nitrogen dioxide data showed mixed results when put under the same comparisons. While the population densities for high-risk blocks were 12.5 percent higher than the population densities of low-risk blocks, the minority ratio was 5.9 percent lower.

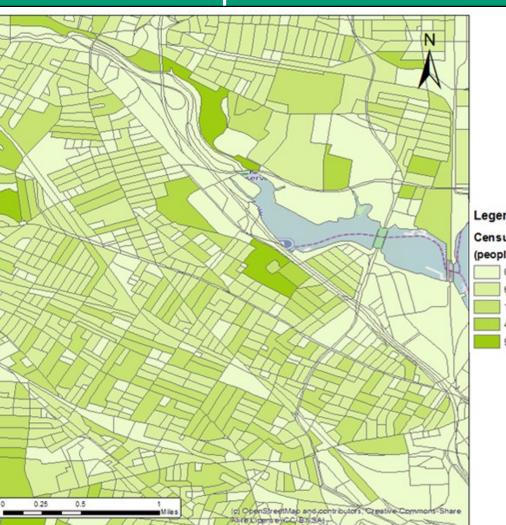
Ρορι Dens Minor

Ρορι Dens Minor

School of Engineering

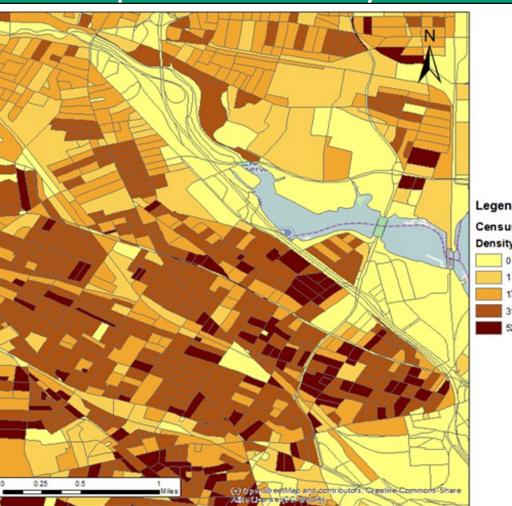
Lege	end		
•	Hot Spots (NO2)		
Spatial Average (NO2)			
Spatial Average			
	(ppb)		
Filled	Contours		
	0 - 8.13835873		
	8.13835873 - 11.8708187		
	11.8708187 - 13.5826206		
	13.5826206 - 17.3150806		
	17.3150806 - 25.4534393		
	25.4534393 - 43.1985412		
	43.1985412 - 81.8904506		
	81.8904506 - 166.255357		
	166.255357 - 350.206926		
	350.206926 - 751.3		

Project Findings


Table 2: Statistical Comparisons

	1		
	Summer Day - PM _{2.5}		
	High-Risk	Low-Risk	
	Blocks	Blocks	
ulation sity	28.633	24.827	
ority Ratio	0.199	0.155	
	Summer Day - N	O ₂	
	Summer Day - N High-Risk Block	O ₂ Low-Risk	
ulation sity		Low-Risk	

Thus, my study revealed a limited positive correlation between air pollution concentration and population density, and no correlation between air pollution concentration and minority ratio.


US 2010 Census

Total Population

Population Density

Minority Ratio

Average Age

s Data
d 2010 Blocks (Total Population) per block) - 59 - 181 2 - 403 4 - 962 3 - 2891
d 2010 Blocks (Population Density) -16 -30 -51 -1627
d s 2010 Blocks (Minority Ratio) y to Total Population Ratio 000000 - 0.081301 081302 - 0.234043 234044 - 0.429603

0.00000 - 14.00000 14.00001 - 32.80000 32.80001 - 42.10000 42.10001 - 56.00000 56.00001 - 89.00000