Background:

Urogenital Schistosomiasis (UGS) is a neglected tropical disease caused by the S. haematobium roundworm parasite; it affects over 121 million people in the world (WHO 2002). Infection occurs through contact with certain rivers where the juvenile parasite lives in an intermediate snail host. Children are often disproportionately burdened with the disease because they are more likely than adults to contact the river during play or water fetching. UGS research is shifting from drug discovery and parasite biology to sociological and water resources research to better understand community structures and issues that affect prevalence of the disease. UGS is endemic in western Africa, where Tufts researchers have been studying the disease for several years in the Eastern Region of Ghana (see map, above). This research focuses on data from June 2012 from one high-prevalence community, Asamama.

One of the goals of the research this summer was to identify spatial patterns of UGS in order to better understand the disease and the unique factors that may contribute to prevalence in a particular community. Children in Asamama are infected from the Abresu River (left), which runs along the eastern edge of the town (see map, below). The community also has several boreholes that provide a UGS parasite-free source of water.

Methods:

GPS data was collected for water sources and individual households in Asamama (see map, above). Children in the community who were tested and treated for UGS in school were manually matched with their house location and their disease status was entered into attribute tables for the lessons. 364 children with disease and spatial data were mapped in ArcGIS version 10.1.

In ArcGIS, several analyses were performed:

- Spatial joining of households and river access points
- Spatial joining of households and boreholes
- Kernel density plots of households, households with disease data, and households with at least one infected child
- Nearest neighbor (NN) analysis of households, households with disease data, and households with at least one infected child

Spatial joining of households and boreholes (example above) in town.

There is no clear pattern in disease rates for populations close to particular boreholes (example above) in town.

Results:

Analysis 1:

Examining a child’s distance from the river as a risk factor

Hypothesis testing (Z-test, α=0.05) revealed that there is not enough evidence to suggest a difference between infected children and uninfected children in how far they live from a river access area (picture above) in Asamama.

Analysis 2:

Examining a child’s access to borehole water as a factor

Analysis 3:

Examining density distributions of the data

Conclusions:

- NO RELATIONSHIP: disease status and river proximity
- NO RELATIONSHIP: disease status and closest borehole
- NO OBVIOUS CLUSTERING OF DISEASE DATA
- There are no obvious spatial patterns evident in Map 2
- There are no clear patterns in disease rates for populations based on their proximity to certain boreholes in town
- There are no clear spatial patterns in disease evident from

While these conclusions do not agree with the original hypothesis, they make sense for a small community such as Asamama, where all water resources are within 1 km of households (this distance is often considered a “convenient” distance for a water source). At this scale, distance is perhaps less of a factor in water choices for households than other factors, such as traditional beliefs and taste preferences.

Further research will involve analyzing patterns in data from household surveys in the town, in order to determine other factors that affect water choices and disease prevalence.

Work Cited:


Acknowledgements:

Faculty Advisors: David M. Gute, Karen C. Kosinski, Mark A. Woodin
Data collection: Akua Atreh, Kara Breen, Hafsa Chaudhry, Alexandra Kulikina, Paul Nevin
Translators and Community Liaisons: Michael Nii Adjei, Prince Appiah, Kwaku, Alta, Isaac; children of Asamama, Ghana; community leaders in Asamama; teachers and heads of school in Asamama
Funding Support: Tufts Institute for the Environment (TIE); Department of Civil and Environmental Engineering, Tufts University; Community Health Program, Tufts University