Category Archives: 2020

COVID-19 and Your portfolio

Dow Jones Industrial Average, Feb-March 20th, 2020. Source: marketwatch.com

Investing in a time of turmoil

The uncertainty of the novel coronavirus pandemic has left global stock markets reeling, erasing gains from the past 3 years. Massive selloffs have occurred over the past month that have not been seen since the 2008 financial crisis. For those of us young enough to be long-term investors (many year horizon) this is not a time to panic sell. I would argue the opposite and to continue your monthly contributions practicing dollar cost averaging. I caution against trying to “catch a falling knife” in trying to time this market volatility with large sums of uninvested cash. This is a trial-by-fire for testing an individual’s tolerance to risk and unrealized loss, so do not throw money in now that you are not comfortable seeing potentially decline another 50% or more in the coming months. Even if that does occur, ride out the bump however long it lasts and eventually you will see the value increase. Historically, market downturns are followed by a recovery, and over the long term still provide the best returns on investment. While the past is no guarantee of future results, the two hundred years of US stock market history would indicate this is still the best way to generate wealth.

Anyone near retirement age should have already reallocated their assets to consist mostly of lower-risk fixed income securities as appropriate for their age. For those of you who have parents who are concerned by this crisis, assure them that unless they need their capital within the next few years, they should not sell holdings at a significant loss. The hit to the economy during this pandemic is uncertain but will definitely be deep. In the coming weeks, unemployment will skyrocket as most sectors grind to a halt. This is certain to continue for the coming months as more and more state-wide lockdowns will go into effect. However, the extent to which this is mitigated depends on the actions of Congress as they continue to debate different stimulus measures.

Choosing stock investments

So, what investments should be considered during this current market discount (and at all times when investing)? I would not feed into frenzy of any “hot stocks” because by the time you have heard about it in the media, they are likely already overvalued. Similarly, companies with promising COVID-19 treatments may end up disappointing investors. The principles I would recommend for those beginners wanting to invest a percentage of their savings would be to dollar cost average into an index fund that tracks the total stock market. These provide the safety of diversification that picking individual stocks do not. Essentially each month, no matter what the price of the fund is, buy the same dollar amount of that fund. Some months you can buy more when the price is low, and other months you buy less when the price is high. Over time, this averages to a lower cost-per-share than jumping in all at once. This is a great way to passively invest in stocks, as you don’t need to do deep analysis of a company that you want to invest in (and feel the pain when it turned out you were wrong). The S&P500 tracks 500 large companies in the US and SPY is a great low cost fund tracking it. Be sure to chose a fund with a low expense ratio (fees), and many popular ones can be found for under 0.1%. Anything charging over 1% eats away at your return and is not worth your money.

For those who want to be more active in their investments and buy individual stocks, you must do your homework. If you don’t want to take the time and discipline to invest in individual stocks, follow the investment strategy in the previous paragraph. Your principal will be much safer that way. There are two main schools of thought for picking stocks, technical analysis and fundamental analysis. Technical analysis looks at volume trends of buying and selling of shares and other metrics on how to predict which way a particular stock will move. In my opinion, this is essentially gambling and should not be followed. Fundamental analysis looks at the fundamentals of a business. All things from its financial health, growth prospects, dividend payments, management team, and advantage over competition are looked at. This is the best way to determine which companies have true staying power over the long run.

Fundamental Analysis and Value Investing

The best-known proponent of fundamental analysis is the investor Warren Buffet, who learned his strategy from the “father of value investing”, Benjamin Graham. Value investing seeks to buy stock at a safe discount, as the investor has determined this stock to be mispriced by the market in her favor. Eventually, she hopes the strong fundamentals of the company place it in the good graces of Wall Street and as more investors buy in, the share price increases. Value investing requires patience, as you could wait many years before your favorite picks become the favorites of Wall Street. But when they do, you will be happily rewarded.

You can read hundreds and hundreds of pages from many books and take many classes on how to learn fundamental analysis. Personally, I feel a great starting off point for those who are interested is to read Ben Graham’s, The Intelligent Investor. My perspective on investing, risk, and emotional responses were completely changed for the better after reading that book. Honestly if I had not read this only a few months ago, I probably would have sold my investments completely at the first whiff of this virus. (I believe time in the market is superior to timing the market). Briefly, the definition Graham gives for investment is the following:

  1. Investment, upon thorough analysis, promises safety of principal and a satisfactory return. Not meeting these requirements is speculation
  2. An investment operation is one that can be justified on both qualitative and quantitative grounds.

In another earlier work by Graham, Security Analysis, he sets criteria that should be met by a company before consideration of purchasing their stock:

  1. a suitable and established dividend return
  2. a stable and adequate earnings record
  3. a satisfactory backing of tangible assets

Essentially this boils down to the company should distribute profits (and they should have for many years prior), they actually have earnings, and their debt does not exceed their assets. If you follow the advice in The Intelligent Investor you will do well. If you want to speculate, avoid doing so with more than you are comfortable seeing disappear to zero. I would strongly urge against gambling with all derivatives (buying on margin, puts, calls, futures etc.) unless you REALLY know what you are doing and are also ok with losing your initial investment, or in some of those cases, owing MORE than you originally had.

Where can you buy stocks?

After putting down your copy of The Intelligent Investor and carefully analyzing a stock that looks attractive to you, you decide to go ahead and buy that stock. But how is this accomplished? Today it is even easier to buy and sell stocks than in the past. A stock broker is authorized to handle this task and there are many companies offering this service online. Fortunately many commission fees for doing this have been eliminated. Some popular brokers are TD Ameritrade, Fidelity, Vanguard, and E-Trade. These companies have different minimum investment amounts so be careful to check the requirements before choosing.

Conclusion

Many of us are not trained in finance, economics, or security analysis (I certainly am not), but I hope that investing does not have to be scary to those in other disciplines and is seen as a valuable way to grow wealth over the long run. It is fun to learn more about a field completely different than your own. This could also be a good skill for scientists, as familiarizing yourself with a prospective company’s 10-K filing (yearly financial report) will teach you a great deal about that company and if they have the financial health to ensure you don’t need to look for a new job in 6 months. This only applies to publicly traded companies however. Startups and established private companies don’t have to disclose as much to the public. Whether or not you decide to take a passive or active approach, you will be able to achieve your financial goals through sound and disciplined investment.

Disclaimer: These views are my own and I am not qualified to give financial or investment advice. Please seek out certified financial planners from trusted institutions. I own shares in SPY and other individual stocks and index funds as of this writing.

Can you find artist among the scientific community?

Can you find artist among the scientific community? If you ask someone off the street if they consider a scientist an artist many may answer no; perceiving scientist as dull people in lab coats. This early March serval scientist at the Tufts Boston Campus where challenged to strut their artistic skills in the Sci-Art Competition helping break down the dull scientist persona people often perceive.

Jacob Klickstein, a Neuroscience student won first place with his “Brain Storm” piece. The piece was part of his current lab work in which he was looking at a cluster of iPSC-derived lower motor neurons stained for a cytoskeleton marker (TuJ1-cyan), a nuclear marker (dapi-blue) and a motor neuron-specific transcription factor (Hb9-red).

For second place, we had a tie between graduate students Ashlee Junior and Linus Williams. Ashlee is a Genetics student, her piece titled “INVADERS!” showcases Candida albicans filaments invading an agar plate.

Linus Williams is an Immunology student, his piece “A heart, broken by rejection”, is a Maisson’s Trichrome of a rejected mouse heart (Blue is fibrosis, red is muscle).

Eric Link is a technician in the Zeng lab. His piece “B-CHP Metatarsal on glass slide”, is a collagen hybridizing probe highlighting cartilage remodeling in the growth plate of a developing mouse metatarsal.

Quentin Bernard is a Microbiology student, his piece “Five, six, pick up Tick”, is an oxide’s scapularis tick stuck on its back before it was microinjected.

Alyssa DiLeo is a Neuroscience student. Her piece, “Possibilities: what went wrong with my western blot”, showcases the unfortunate results from a botched western blot.

Rachael Ryner is a CMDB student. Her piece, “Mermaid Mouse Brain”, is a fluorescent mouse brain section that has been immune-stained for beta-catenin and GABA in a CaMKII-Cre:Ai9 background.

Surendra Sharma is a CMDB student. His piece “The Dark Side of the Genome”, describes the long considered “dark matter” of genomes, regulatory noncoding RNAs like miRNAs and lncRNAs which are now recognized as key drivers and/or regulators of a variety of cellular processes.

Dominique Ameroso is a Neuroscience student. Her piece “Alien Astrocytes”, showcases astrocytes in culture – or an alien waiting for host.

Pragya Singh is a CMDB student. Her piece” A network of collagen”, exhibits collagen bundles forming in 3D, specifically a collagen1 gel as a result of LOXL2 treatment.

As scientists we have characteristics that by any dictionary definition would categorize us as artists. Naturally most scientists are curious. Our daily work requires us to be creative, take risks, and have a sense of passion for the work we do. The muse of a scientist lies in the continuous sense of adventure that comes from trying to uncover the unknowns in our projects. We don’t have to look too far for an example of an established scientist who struts his scientific muscles regularly. In our own Tufts community, our very own Dean, Dan Jay, is a visual artist who combines art and science to create pieces that express inspiration in science. This art competition was definitely a testament to our communities vibrant artistic abilities. Thank you to all those who participated and keep a look out for upcoming events and competitions.

References:

“Daniel Jay.” Daniel Jay | School of the Museum of Fine Arts | Tufts University, smfa.tufts.edu/directory/daniel-jay.

Humans of Tufts Boston: Noell Cho, “Representation Can Have a Broader Impact”

Humans of Tufts Boston, 12 Mar 2020

Noell Cho, Neuroscience, Second-year Ph.D. “Representation Can Have a Broader Impact”

JH: Thank you so much for taking the time to answer some questions! How did you get your start in science?

NC: My start in science harkens back to my high school on the island of Guam, when I volunteered to work at its endangered species lab under the direction of our AP Bio teacher Dr. Hauhouot Diambra-Odi. For decades, invasive species have completely destroyed Guam’s ecosystems. Of particular interest to our group was the introduced Philippine collard dove, which is threatened by the invasive Brown tree snakes. In the lab we designed experiments to learn more about existing bird migration patterns and behaviors. We delved into “field work,” which involved several camping trips on an uninhabited islet called Alupat island (approximately 200 meters off the western coast of Guam). We eventually presented the data at the International Student Science Fair in Kyoto, Japan. Unfortunately, some of Guam’s endemic bird populations, such as the Guam rail are deemed extinct in the wild and extirpated from the island. I was surprised to find that the New England Aquarium had these birds, a little piece of home right in Boston!

Cetti Bay in the southern region of Guam

JH: What drew you to neuroscience?

NC: I worked as a tech in several different labs and research areas, including cancer biology, immunology, and translational neuroscience. I worked in Clive Svendsen’s lab at Cedars-Sinai in Los Angeles, where I became involved in stem-cell transplantation studies in animal models of neurodegeneration, specifically the SOD1G93A rat model of ALS. I was fascinated that a neurodegenerative disease phenotype was able to be recapitulated in rodents harboring a mutated human ALS gene. Through these studies, I joined Gretchen Thomsen’s lab, whose particular focus was studying the link between repetitive TBI and ALS. My previous experience in immunology research motivated my investigation of selective inflammatory responses related to TBI-induced neurodegeneration. I fully credit working in the Thomsen lab as where I discovered my passion for neuroscience research.

The Thomsen lab at Cedars-Sinai. From left to right: Gretchen Thomsen (PI), Mor Alkaslasi, Patricia Haro-Lopez, Noell Cho

JH: What is your favorite technique that you use in lab?

NC: I’ve become an apprentice of electrophysiology since I joined the Moss laboratory here at Tufts. Tarek Deeb has been profound in imparting his knowledge of ephys and its many applications for neuroscience research. It’s intriguing to use the patch-clamp technique to measure the electrical properties and functional activity of neurons. My research experience has been primarily focused on looking at biochemical changes in neurological disease, so it has been refreshing to learn a new technique and observe electrophysiological changes in the brain. I remember that first moment, not too long ago actually, when I patched onto hippocampal neurons in mouse slices and observing action potential firing patterns. Seeing those spikes is so satisfying!

Members of the Moss lab representing at Relays

JH: Have you been following any fascinating new scientific developments or controversies?

NC: More recently, I’m trying to stay updated on new ephys systems in vivo and ex vivo. There are so many cool videos and photos that pop up on my feed of some of the most insane multipatch ephys rigs. Ed Boyden’s group has made tremendous advances in automated in vivo multipatch recordings. Automated multipatch rigs not only allow for ease of recording multiple neurons simultaneously, but also provide large-scale mapping of brain circuits. Multipatch clamp recordings also reveal more about connectivity between specific cell types in the brain, and automation provides a huge advantage in terms of time and feasibility. It’s always exciting to see the latest innovations that come out from the Boyden lab, but also it seems that robots are an inevitable part of scientific developments.

Noell presenting her repetitive TBI model at her first SFN!

JH: What do you do outside of lab?

NC: Because I’m a Boston transplant from Los Angeles, it was important to me to foster an environment at school that would feel like home. Thankfully, student organizations such as GWiSE and SPINES provided just that. Currently, I am the GWiSE secretary and operate media and communications for our group. As a first-year, I enjoyed the GWiSE coffee & conversations events that feature a woman in STEM and learning of their school and career experiences. I am so thankful for my former PI, mentor and friend, Gretchen Thomsen, who believed in me and is one of the reasons why I am in grad school today. I definitely benefit from the efforts of GWiSE and SPINES that provide programming surrounding diversity and inclusion, because ultimately representation can have a broader impact. You can follow GWiSE and SPINES on Twitter (@TuftsGwise and @TuftsSPINES)!

Checking out the East Coast surf in Montauk, NY

“We Ball Outrageous”

Did you know that GSBS has a basketball team?

The Tufts Medical campus has had a long-standing basketball league that historically consisted of medical and dental student teams. It wasn’t until October 2019 that GSBS contributed its first team to the league. The Contaminators was founded by team captain Linus Williams (#6) and was made up of both PhD and MD/PhD students. With financial aid from the Graduate Student Council, The Contaminators bought green and gold jerseys.

The 2019 season started in October and ended in January with 9 Saturday games. The Contaminators started out their season strong, winning their first 3 games. The competition started to heat up later in the season, and The Contaminators entered the playoffs with a record of 4-5. This league’s playoffs were a double elimination tournament running through mid-February. The Contaminators won their first playoff game, but lost the following game, sending them to the loser’s bracket. They were eliminated in their very next game by the eventual champions, Nothing but Netters. Overall, The Contaminators ended their 2019-2020 campaign with a respectable 5-7 record.

Williams, who is known for scoring with his signature one-handed floater, said he was happy with how the season went: “We learned how to defend with man-to-man and with zones, and were able to adapt to whatever the situation called for.” One of the team’s weaknesses was dealing with defensive pressure, especially when Liam Power (#2), Point Guard and MVP, was not on the court. This resulted in more turnovers due to the restricted court vision of the ballhandler.

Team member Daniel Fritz (#11) said “The league was a perfect balance between fun and competition.” He wants to encourage other students to join who may be wary of a team sport that they’ve never played before.

The team recruited students with a wide range of experience in the sport, from first-timers who wanted to learn the fundamentals of the game to seasoned veterans who were lifelong basketball players. Regardless of skill, each teammate was a valued asset in a sport that requires cardiovascular fitness. Lack of female substitutes was especially felt with only 3 women on the team. The co-ed league required that one female player be on the court at all times. That meant one female player would have to play the entire game if the other two female teammates couldn’t make it (shout-out to Sasha Smolgovsky #12, Patriots fan). One of The Contaminators’ goals for future seasons is to increase the recruitment of players.

Although the season is over, there are upcoming opportunities to get involved. During the spring and summer, there will be pick-up games hosted by Williams and future team captain for 2020, Joshua Man (#24—Kobe). If you are interested in participating in pick-up games or the 2020 season, please contact Williams or Man via their Tufts email.

Other team members of The Contaminators:

#3, Zemplen Pataki—Valuable tall person who can shoot.

#4, Rachael Ryner—Author of this article.

#7, Zoie Magri—Played middle school b-ball and it shows.

#14, David Jetton—An owner of the Green Bay Packers who plays b-ball on the side.

#32, Mike Rist—Secret weapon when he’s not at a wedding in New Hampshire.

#33, Mike Thorsen—Team morale booster and team mascot.

New Year, New You: A Guide to Making Your Goals S.M.A.R.T.

Happy New Year, everyone!

There’s a lot of motivation flowing at the beginning of a new year (and, in this case, a new decade!) to set goals — and subsequently crush them. Most often, I quickly find that my dedication to stick with whatever harebrained New Year’s resolution I may or may not have come up with is waning (exponentially decaying with a half-life of about 4.5 days, resulting in only 1% of my original motivation still present and accounted for at the end of January). And while my resolutions have typically focused on personal development, this year I’m turning my attention to the lab.

As graduate students, we’re often spread thin, what with trying to get our experiments done, train new students, and meet with our advisors. Add to that taking classes (at least in your early years), keeping on top of the literature, creating your own literature, and networking, and it’s a wonder that any of us have time to focus on things other than our degrees. What are we to do when we want to set goals and make sure we achieve them?

I was musing over how to write this article over dinner with a friend one evening when she mentioned S.M.A.R.T. criteria. While I’d heard of this acronym before, I never knew exactly what it meant, or how I was supposed to apply it, until she explained it to me. It makes a whole lot of practical sense, so I’m going to pay it forward and share it all with you, in case you were similarly unaware of its meaning and potential.

S.M.A.R.T. criteria were first introduced by George Doran in 1981 (1). In the article he published, Doran states that objective should be [(quoted)]:

            Specific – target a specific area for improvement.

            Measurable – quantify or at least suggest an indicator of
            progress.

            Assignable – specify who will do it.

            Realistic – state what results can realistically be achieved,
            given available resources.

            Time-related – specify when the result(s) can be achieved.

Keep in mind that this article was originally meant for managers with a team. Other sources and articles on S.M.A.R.T criteria use other words (e.g. “achievable” in place of “assignable” and “relevant” instead of “realistic”) (2). For graduate students, using “achievable” might be more realistic than “assignable,” since, unless we’re managing another student, we’re going to “assign” the work to ourselves.

Let’s set an example goal, say, reading more of the literature in a particular field. How can we make this into a S.M.A.R.T. goal? For each letter in the acronym, there will be a list of things to consider and refinement of the goal to include the necessary information.

Specific
Consider the goal, who will be involved, and what your motivation is.

I want to read more papers to gain a better understanding of the role of Wnt signaling in cancer.”

Measurable
How can this goal be quantified? How will you know if you’ve made progress?

“I want to read 20 papers to gain a better understanding of the role of Wnt signaling in cancer.”

Assignable/Achievable
For graduate students, reading 20 scientific journal articles is certainly an achievable goal. So we get a checkmark here!

Realistic/Relevant
Consider what resources are available to help you achieve this goal. Is this goal relevant to your overall objectives (earning a graduate degree)?

Using journal access provided by the university library, I want to read 20 papers to gain a better understanding of the role of Wnt signaling in cancer.”

Time-related
Consider what your deadline is (perhaps you’re writing a review article on Wnt signaling and a section on cancer will be included) and whether it is realistic.

“Using journal access provided by the university library, I want to read 20 papers by June 15th to gain a better understanding of the role of Wnt signaling in cancer.”

Consider this article as a starting point when setting goals. The nice thing about S.M.A.R.T. is it gives you an achievable goal to go after, but the bad thing is it puts you in a structured box, which can prevent you from taking some bigger risks that could really pay off! It’s important to know when your goals need to be more flexible than S.M.A.R.T. criteria allows them to be, but if you, like me, find yourself getting frustrated for setting goals and not achieving them, this may be a good place to start.

References:
1. Doran GT. (1981) There’s a S.M.A.R.T way to write management’s goals and objectives. Management Review 70(11):35-36.
2. https://www.mindtools.com/pages/article/smart-goals.htm

The Red Meat Article Controversy: HAMBURGLER STRIKES AGAIN

Pepperoni pizza. Pulled-pork sandwiches. Burgers. Bacon. These are some of the foods that I miss the most since deciding to reduce my meat consumption to virtually zero servings a week. My decision was environmentally and eco-consciously driven, but many Americans cut back meat consumption due to health concerns. The risk of red meat and processed meat consumption in cardiac disease, cancer, and overall quality of life has thoroughly pervaded the public conscience. But at the beginning of October 2019, a review was released in the Annals of Internal Medicine that recommended not changing current red or processed meat consumption. The authors concluded there is poor evidence linking red/processed meat consumption to adverse health risks, which directly contradicts years of nutrition research.

I’ve never read a lick of nutritional research in my life, but I have enough experience in reading scientific literature to attempt a summary of the review for you here. The authors integrated evidence from studies that included at least 6 months of red meat or processed meat consumption and at least 1,000 participants. They additionally took into consideration the feasibility of reducing meat consumption, the cost of meat consumption, and the personal preference of eating meat for the participants. However, they excluded environmental impact and humane animal practices into their consideration.

The evidence was evaluated with a set of guidelines the authors outlined, which included systematic review and GRADE (Grading of Recommendations, Assessment, Development, and Evaluation) methodology. GRADE is traditionally used in rating clinical drug trials, so that recommendations can be made regarding a drug’s efficacy and safety. GRADE was not designed nor has it been used before in nutritional research. After the evidence was rated in this manner, a “low conflict-of-interest” group of experts and some public members outside of the science community made their recommendations. Their findings weren’t very conclusive; evaluation of the evidence provided little certainty in the risks associated with red meat and processed meat consumption.

The use of the word “certainty” in the article highlights the bias that the authors’ methodology introduces; it is a subjective quality. Our faith in the authors’ discernment depends on our faith in the authors themselves.

How was the group of experts and public members making the recommendation determined to be “low conflict-of-interest”? The panel was asked to disclose any financial or intellectual conflicts from within the past 3 years. Only those with none were invited to participate in the panel. But is 3 years long enough? Dr. Bradley Johnston, the head researcher of the article, has industry ties that lie just outside the 3 year window. The New York Times and the Washington Post reported on this and another author, Dr. Patrick Stover, who has similar ties to the beef industry through the Agriculture and Life Sciences (AgriLife) program at Texas A&M.

In the wake of the red meat article, prominent leaders in the field of nutrition and public health have criticized its recommendation. Prior years of nutritional research have illuminated the risk of frequent red and processed meat consumption in contracting heart disease and cancer. Some experts point to the distrust that this direct contradiction instills in scientific research, whose relationship with the public is already challenged in areas like global warming.

Environmental impact and humane animal practices were among the evidence that the panel did not take into consideration while making their recommendation. How would their recommendation change if they had considered these conditions? The evidence is staggering. Red and processed meat consumption contribute to the accumulation of greenhouse gases through animal agriculture and deforestation. Additionally, while meat consumption is rising across the globe, the stress on water availability, biodiversity, natural ecosystems, and the animals themselves increases as well. Higher demand for red meat has resulted in the sub-ideal conditions for animals that documentaries like Food Inc. have made us familiar with. Cattle, pork, and poultry often have limited access to open pasture and are fed unnatural diets with antibiotics to save money. Confronting this information was enough for me to decide to reduce meat consumption.

For many, incorporating meat into their diet is easier and cheaper than eating a plant-based diet. For those looking to reduce their carbon footprint through what they eat, I suggest purchasing poultry (cheaper) and meat alternatives (increasingly more accessible) over red meat. However, people also care about the nutritional value in their food. The rise in popularity of plant-based meat alternatives can be seen in the fast food industry. Notably, Burger King has released their Impossible Whopper within the last year, which uses an Impossible Burger patty made from soy and potato protein with the crucial ingredient of heme (the molecule attributed with “meaty” flavor). Despite whether it comes from a fast food restaurant or the meat aisle, we should still be reading the nutritional facts before congratulating ourselves on choosing the “healthy option”.

Overall, while doing my research into the red meat article controversy, my take-aways were as follows:

-A panel of experts and members of the public made a recommendation to not change current red or processed meat consumption habits based on a review of evidence that weakly points to adverse health consequences.

-Like most recommendations, this one has sources of bias despite the authors’ efforts to minimize them.

-Human nutrition research also has its own caveats, confounding factors, and complexities. Since researchers can’t control everything that a person eats in a day, we can’t expect a study to be completely accurate.

-Some of the authors have ties to trade industries. Whether those ties influenced the recommendation of the article remains uncertain.

-There are good reasons for reducing meat consumption that pertain less to the health of an individual and more to the health of an entire planet.