Category Archives: articles

Can you find artist among the scientific community?

Can you find artist among the scientific community? If you ask someone off the street if they consider a scientist an artist many may answer no; perceiving scientist as dull people in lab coats. This early March serval scientist at the Tufts Boston Campus where challenged to strut their artistic skills in the Sci-Art Competition helping break down the dull scientist persona people often perceive.

Jacob Klickstein, a Neuroscience student won first place with his “Brain Storm” piece. The piece was part of his current lab work in which he was looking at a cluster of iPSC-derived lower motor neurons stained for a cytoskeleton marker (TuJ1-cyan), a nuclear marker (dapi-blue) and a motor neuron-specific transcription factor (Hb9-red).

For second place, we had a tie between graduate students Ashlee Junior and Linus Williams. Ashlee is a Genetics student, her piece titled “INVADERS!” showcases Candida albicans filaments invading an agar plate.

Linus Williams is an Immunology student, his piece “A heart, broken by rejection”, is a Maisson’s Trichrome of a rejected mouse heart (Blue is fibrosis, red is muscle).

Eric Link is a technician in the Zeng lab. His piece “B-CHP Metatarsal on glass slide”, is a collagen hybridizing probe highlighting cartilage remodeling in the growth plate of a developing mouse metatarsal.

Quentin Bernard is a Microbiology student, his piece “Five, six, pick up Tick”, is an oxide’s scapularis tick stuck on its back before it was microinjected.

Alyssa DiLeo is a Neuroscience student. Her piece, “Possibilities: what went wrong with my western blot”, showcases the unfortunate results from a botched western blot.

Rachael Ryner is a CMDB student. Her piece, “Mermaid Mouse Brain”, is a fluorescent mouse brain section that has been immune-stained for beta-catenin and GABA in a CaMKII-Cre:Ai9 background.

Surendra Sharma is a CMDB student. His piece “The Dark Side of the Genome”, describes the long considered “dark matter” of genomes, regulatory noncoding RNAs like miRNAs and lncRNAs which are now recognized as key drivers and/or regulators of a variety of cellular processes.

Dominique Ameroso is a Neuroscience student. Her piece “Alien Astrocytes”, showcases astrocytes in culture – or an alien waiting for host.

Pragya Singh is a CMDB student. Her piece” A network of collagen”, exhibits collagen bundles forming in 3D, specifically a collagen1 gel as a result of LOXL2 treatment.

As scientists we have characteristics that by any dictionary definition would categorize us as artists. Naturally most scientists are curious. Our daily work requires us to be creative, take risks, and have a sense of passion for the work we do. The muse of a scientist lies in the continuous sense of adventure that comes from trying to uncover the unknowns in our projects. We don’t have to look too far for an example of an established scientist who struts his scientific muscles regularly. In our own Tufts community, our very own Dean, Dan Jay, is a visual artist who combines art and science to create pieces that express inspiration in science. This art competition was definitely a testament to our communities vibrant artistic abilities. Thank you to all those who participated and keep a look out for upcoming events and competitions.

References:

“Daniel Jay.” Daniel Jay | School of the Museum of Fine Arts | Tufts University, smfa.tufts.edu/directory/daniel-jay.

Humans of Tufts Boston: Noell Cho, “Representation Can Have a Broader Impact”

Humans of Tufts Boston, 12 Mar 2020

Noell Cho, Neuroscience, Second-year Ph.D. “Representation Can Have a Broader Impact”

JH: Thank you so much for taking the time to answer some questions! How did you get your start in science?

NC: My start in science harkens back to my high school on the island of Guam, when I volunteered to work at its endangered species lab under the direction of our AP Bio teacher Dr. Hauhouot Diambra-Odi. For decades, invasive species have completely destroyed Guam’s ecosystems. Of particular interest to our group was the introduced Philippine collard dove, which is threatened by the invasive Brown tree snakes. In the lab we designed experiments to learn more about existing bird migration patterns and behaviors. We delved into “field work,” which involved several camping trips on an uninhabited islet called Alupat island (approximately 200 meters off the western coast of Guam). We eventually presented the data at the International Student Science Fair in Kyoto, Japan. Unfortunately, some of Guam’s endemic bird populations, such as the Guam rail are deemed extinct in the wild and extirpated from the island. I was surprised to find that the New England Aquarium had these birds, a little piece of home right in Boston!

Cetti Bay in the southern region of Guam

JH: What drew you to neuroscience?

NC: I worked as a tech in several different labs and research areas, including cancer biology, immunology, and translational neuroscience. I worked in Clive Svendsen’s lab at Cedars-Sinai in Los Angeles, where I became involved in stem-cell transplantation studies in animal models of neurodegeneration, specifically the SOD1G93A rat model of ALS. I was fascinated that a neurodegenerative disease phenotype was able to be recapitulated in rodents harboring a mutated human ALS gene. Through these studies, I joined Gretchen Thomsen’s lab, whose particular focus was studying the link between repetitive TBI and ALS. My previous experience in immunology research motivated my investigation of selective inflammatory responses related to TBI-induced neurodegeneration. I fully credit working in the Thomsen lab as where I discovered my passion for neuroscience research.

The Thomsen lab at Cedars-Sinai. From left to right: Gretchen Thomsen (PI), Mor Alkaslasi, Patricia Haro-Lopez, Noell Cho

JH: What is your favorite technique that you use in lab?

NC: I’ve become an apprentice of electrophysiology since I joined the Moss laboratory here at Tufts. Tarek Deeb has been profound in imparting his knowledge of ephys and its many applications for neuroscience research. It’s intriguing to use the patch-clamp technique to measure the electrical properties and functional activity of neurons. My research experience has been primarily focused on looking at biochemical changes in neurological disease, so it has been refreshing to learn a new technique and observe electrophysiological changes in the brain. I remember that first moment, not too long ago actually, when I patched onto hippocampal neurons in mouse slices and observing action potential firing patterns. Seeing those spikes is so satisfying!

Members of the Moss lab representing at Relays

JH: Have you been following any fascinating new scientific developments or controversies?

NC: More recently, I’m trying to stay updated on new ephys systems in vivo and ex vivo. There are so many cool videos and photos that pop up on my feed of some of the most insane multipatch ephys rigs. Ed Boyden’s group has made tremendous advances in automated in vivo multipatch recordings. Automated multipatch rigs not only allow for ease of recording multiple neurons simultaneously, but also provide large-scale mapping of brain circuits. Multipatch clamp recordings also reveal more about connectivity between specific cell types in the brain, and automation provides a huge advantage in terms of time and feasibility. It’s always exciting to see the latest innovations that come out from the Boyden lab, but also it seems that robots are an inevitable part of scientific developments.

Noell presenting her repetitive TBI model at her first SFN!

JH: What do you do outside of lab?

NC: Because I’m a Boston transplant from Los Angeles, it was important to me to foster an environment at school that would feel like home. Thankfully, student organizations such as GWiSE and SPINES provided just that. Currently, I am the GWiSE secretary and operate media and communications for our group. As a first-year, I enjoyed the GWiSE coffee & conversations events that feature a woman in STEM and learning of their school and career experiences. I am so thankful for my former PI, mentor and friend, Gretchen Thomsen, who believed in me and is one of the reasons why I am in grad school today. I definitely benefit from the efforts of GWiSE and SPINES that provide programming surrounding diversity and inclusion, because ultimately representation can have a broader impact. You can follow GWiSE and SPINES on Twitter (@TuftsGwise and @TuftsSPINES)!

Checking out the East Coast surf in Montauk, NY

“We Ball Outrageous”

Did you know that GSBS has a basketball team?

The Tufts Medical campus has had a long-standing basketball league that historically consisted of medical and dental student teams. It wasn’t until October 2019 that GSBS contributed its first team to the league. The Contaminators was founded by team captain Linus Williams (#6) and was made up of both PhD and MD/PhD students. With financial aid from the Graduate Student Council, The Contaminators bought green and gold jerseys.

The 2019 season started in October and ended in January with 9 Saturday games. The Contaminators started out their season strong, winning their first 3 games. The competition started to heat up later in the season, and The Contaminators entered the playoffs with a record of 4-5. This league’s playoffs were a double elimination tournament running through mid-February. The Contaminators won their first playoff game, but lost the following game, sending them to the loser’s bracket. They were eliminated in their very next game by the eventual champions, Nothing but Netters. Overall, The Contaminators ended their 2019-2020 campaign with a respectable 5-7 record.

Williams, who is known for scoring with his signature one-handed floater, said he was happy with how the season went: “We learned how to defend with man-to-man and with zones, and were able to adapt to whatever the situation called for.” One of the team’s weaknesses was dealing with defensive pressure, especially when Liam Power (#2), Point Guard and MVP, was not on the court. This resulted in more turnovers due to the restricted court vision of the ballhandler.

Team member Daniel Fritz (#11) said “The league was a perfect balance between fun and competition.” He wants to encourage other students to join who may be wary of a team sport that they’ve never played before.

The team recruited students with a wide range of experience in the sport, from first-timers who wanted to learn the fundamentals of the game to seasoned veterans who were lifelong basketball players. Regardless of skill, each teammate was a valued asset in a sport that requires cardiovascular fitness. Lack of female substitutes was especially felt with only 3 women on the team. The co-ed league required that one female player be on the court at all times. That meant one female player would have to play the entire game if the other two female teammates couldn’t make it (shout-out to Sasha Smolgovsky #12, Patriots fan). One of The Contaminators’ goals for future seasons is to increase the recruitment of players.

Although the season is over, there are upcoming opportunities to get involved. During the spring and summer, there will be pick-up games hosted by Williams and future team captain for 2020, Joshua Man (#24—Kobe). If you are interested in participating in pick-up games or the 2020 season, please contact Williams or Man via their Tufts email.

Other team members of The Contaminators:

#3, Zemplen Pataki—Valuable tall person who can shoot.

#4, Rachael Ryner—Author of this article.

#7, Zoie Magri—Played middle school b-ball and it shows.

#14, David Jetton—An owner of the Green Bay Packers who plays b-ball on the side.

#32, Mike Rist—Secret weapon when he’s not at a wedding in New Hampshire.

#33, Mike Thorsen—Team morale booster and team mascot.

2019 Nobel Prizes: Another Year Filled with Great Discoveries

This past December, the prestigious international Nobel prizes were awarded in recognition of academic, cultural and scientific advances. Before delving into this past year’s prizes, it seems only appropriate to take notice into how nominations to become a Nobel laureate occur. The process to select laureates begins in September when invitations are sent out to a select group to make nominations. The deadline for nominations is January 31 of the following year. Once nominations are in, there is a three-month process in which all nominations are being consulted on, with experts. After having consulted with experts, reports are written with recommendations during July and June. In September the Academy gets a report on final candidates and in October, after a majority vote, the Nobel Prize is announced. Bringing us full circle to this past December’s Nobel prize awards.

We begin with the Nobel Prize in Physics which this year was awarded for two separate discoveries, each of which I will comment on separately. The first, “the discovery of an exoplanet orbiting a solar-type star”, by Michel Mayor and Didler Queloz ushered in a new era for exoplanet astronomy. Before this, physicists wondered if there were other planets like ours in the solar system, and more deeply, wondered if there were planets just like our Earth that could sustain complex life. Since then, the interest in exoplanet astronomy has grown, and the tools at the disposal of scientists studying them have improved, with more exciting discoveries about exoplanets every year. The second, with equal value, “for theoretical discoveries in physical cosmology” by James Peebles is profound because his work attempts to understand the origins of the entire universe. A lot of active research in astrophysics depends on understanding what the initial conditions of the universe were like and wondering how the galaxies themselves came into existence. In building this article, it is worth mentioning many physicists felt the award for cosmology was bittersweet as it came a little too late for a certain well-known astronomer whose contributions to cosmology were also immense. Vera Rubin was an astronomer in the field of galaxy rotation rates that revealed the presence of dark matter. Dark matter is an essential component in the theories of cosmology, and many felt it sad to think her contributions did not get as much recognition from the Nobel committee when she was alive (She passed away in 2016).

The Nobel prize in Physiology or Medicine “for their discoveries of how cells sense and adapt to oxygen availability” was awarded to William G. Kaelin Jr, Sir Peter J. Ratcliffe and Gregg L. Semenza. Every cell in our body requires oxygen for basic metabolic and physiological functions. Several animals utilize oxidation reactions to power the conversion of nutrients from food into energy, making oxygen essential for supporting life. This discovery completed the full picture of oxygen sensing in cells that began back in 1931 with Otto Warburg’s discovery concerning the enzymatic basis for cellular respiration, and Corneille Heymans in 1938 for his findings on the role of the nervous systems respiratory response to oxygen. The question that loomed over many scientists in the current century, that this year’s Nobel finally addressed, was cellular adaptation to oxygen availability through gene expression. The ability to alter gene expression patterns to oxygen availability is essential during normal physiological events from embryonic development to even exercise. This variation also extends to pathological states such as cancer and infection. William Kaelin, Peter Ratcliffe and Gregg Semenza found that during normoxia a transcription factor that alters normal physiological processes is degraded via the ubiquitin proteasome system. However, during hypoxic states such as cancer or infection this transcription factor is not ubiquitin tagged and thus not sent to the proteasome for degradation leading to alterations in gene expression. The question these scientists helped to answer is a textbook question that we will likely see being taught in early biology classes. It is also something we will likely see being applied to new therapeutics as it paves the way for promising new strategies to fight anemia, cancer and many other diseases.

Lithium ion batteries are everywhere from your smartphones to devices used on the International Space Station. The Nobel prize in Chemistry “for the development of lithium-ion batteries” was awarded to John B. Goodenough, M. Stanley Whittingham, and Akira Yoshino. The concept of lithium batteries has been around since 1991 and since their introduction to the field they have been revolutionary. The working principle of a battery is simple; it consists of two electrodes (metals like lithium) each connected to an electric circuit which itself is separated by an electrolyte that can accommodate charged species. Before we had lithium ion batteries, batteries relied on other metals such as copper, lead, and nickel. The main issue with the previous battery designs was that they were not rechargeable. Lithium on the other hand was rechargeable but prior to perfecting the design of the lithium battery, many worried it was too explosive. The current design of lithium batteries is not based on a chemical reaction as the designs preceding it were. Rather the new design relies on ions flowing back and forth between anode and cathode. This design is advantageous as it allows users to charge their batteries hundreds of times before the performance of the battery deteriorates. The work of these scientists is exciting as it introduces new power resources that other scientist can expand on in an era that seeks to lean away from fossil fuels. 

The last Nobel prize I will comment on is in Economics which was awarded to Abhijit Banerjee, Esther Duflo and Michael Kremer “for their experimental approach to alleviating global poverty”. According to the UN though, the global poverty rate has declined by half since the beginning of the twenty-first century, one in ten people in developing regions still live on less then two U.S. dollars. Many have attempted to help address the problem but have come short, describing the problem as too big. This year’s laureates went about addressing the crisis using a more strategic approach. The economists utilized a method familiar to many clinicians; they utilized Randomized Controlled Trials or RCTs. Instead of tackling poverty as a whole, they set up randomized trials in different locations in developing countries, in which they compared different groups with the same average character analyzing different things that contribute to poverty: education, health access, job availability, etc. By breaking down the problem, the economists were able to better define the needs of these developing countries in terms of resources they need, or have but aren’t utilizing. Today the field of developmental economics relies on field experiments as the gold standard for experiments done in order to give more valuable data.

For more information on past and current Nobel laureates visit: https://www.nobelprize.org/all-2019-nobel-prizes/

References:

“All 2019 Nobel Prizes.” NobelPrize.org, www.nobelprize.org/all-2019-nobel-prizes/.

Kabisch, Maria, et al. “Randomized Controlled Trials: Part 17 of a Series on Evaluation of Scientific Publications.” Deutsches Arzteblatt International, Deutscher Arzte Verlag, Sept. 2011, www.ncbi.nlm.nih.gov/pmc/articles/PMC3196997/.

“Lithium Ion Battery.” Lithium Ion Battery – an Overview | ScienceDirect Topics, www.sciencedirect.com/topics/chemistry/lithium-ion-battery.

“Power System.” How Do Batteries Work?, www.qrg.northwestern.edu/projects/vss/docs/Power/2-how-do-batteries-work.html.

“Areas of Research.” Areas of Research | Max Planck Institute for Astrophysics, www.mpa-garching.mpg.de/27882/Areas_of_Research.

Humans of Tufts Boston: Uri Bulow, “Archaea Don’t Get Enough Love”

Humans of Tufts Boston, 13 February 2020

Uri Bulow, Microbiology, Third-year Ph.D. Student (Fifth-year M.D./Ph.D.): “Archaea Don’t Get Enough Love”

JH: Thank you so much for taking the time to answer some questions! So what were you doing before graduate school?

UB: I worked as a tech in a lab in Boulder for two years after finishing my degree in molecular biology. I was in a molecular cardiology lab, but I ended up working on a transduction system and found out that I enjoyed thinking about viruses more than myosin. I also loved the microbiology classes I took (thank you, Norman Pace and Shelley Copley), so when I came to Tufts I decided to join the microbiology department. Now I work on Lassa virus, which is a hemorrhagic fever virus. Hemorrhagic fever viruses (like Lassa or Ebola) are characterized by high fevers, multi-system organ failure, and hemorrhaging from mucous membranes (though this is less common than the name would suggest). I really enjoy being able to study such a simple and elegant system. Lassa only has 4 genes, any organism with more than that is just showing off!

JH: Getting an MD/PhD requires a great deal of dedication and time. Why did you go for an MD/PhD, and did you decide you wanted to go into medicine or science first?

UB: I always knew I wanted to be a scientist, and I figured that if a PhD takes 6 years and an MD/PhD takes 8, I might as well throw in the free MD since it would be interesting and it’s only an additional 2 years. At the time I didn’t really know what residency was, or that MD training doesn’t end when you graduate. Oops. Since starting this program I’ve discovered that I actually enjoy medicine, and making a career of both science and medicine sounds pretty ideal to me.

JH: Are there any major controversies in your field right now? What are they, and what are your thoughts?

UB: I know that this doesn’t need to be said to any GSBS students, but people need to get over this antivaxxer nonsense that’s threatening the health of our country. Vaccines are arguably the single greatest healthcare achievement we have ever made as a species, and watching them get dismissed by parents who would rather use essential oils and spells to ward off evil spirits is incredibly frustrating. The CDC actually estimates that 2.5 million lives are saved every year due to vaccination.*

JH: Is there anything you think is under-appreciated in microbiology (or medicine, if you prefer) as a whole?

UB: I think that archaea don’t get enough love. They’re a whole separate domain of life, comparable to bacteria or eukaryotes, and we know so little about those adorable little weirdos. Did you know that their plasma membranes aren’t bilayers, and that they use ether-linked lipids instead of ester-linked lipids? They live in every known biome on Earth, even inside our own GI tract, yet we know so little about them. What are they up to?

JH: What do you like to do outside of lab?

UB: Lately I’ve been really enjoying the Berklee student concerts. They’re super cheap and those kids are super talented. Shout-out to Mike Thorsen for introducing me to them. My favorite thing to do is to experiment in the kitchen. I recently dry-aged a beef striploin for 90 days, made my own lox, smoked some cheese, and I’m currently making pineapple vinegar. I also really enjoy marathoning the Lord of the Rings with friends, photoshopping my PI’s face into funny pictures, growing super-hot peppers, and canceling plans so I can stay home and read.

The famous lox

*Uri kindly provided this further evidence for the benefits of vaccines from an economic standpoint: “A recent economic analysis of 10 vaccines for 94 low- and middle-income countries estimated that an investment of $34 billion for the immunization programs resulted in savings of $586 billion in reducing costs of illness and $1.53 trillion when broader economic benefits were included.” Orenstein and Ahmed. Proc Natl Acad Sci U S A. 2017 Apr 18. 114(16):4031-4033.

2019 novel Coronavirus: The latest zoonosis

A new coronavirus has made the jump from its animal host into the human population from what is believed to be an animal market in Wuhan, China. Reminiscent of the coronavirus responsible for the SARS (Severe Acute Respiratory Syndrome) outbreak during 2002-3, this virus is making headlines around the world. As of this writing, it has already infected and killed more people in China in the past three months than the entire SARS outbreak. The current infected count is over 28,000 people with over 560 deaths, all but two of which are in China. While the risk to people outside of China is minimal at this time, the outbreak must be monitored carefully as reports of human-to-human transmission are being confirmed. Because this is a new outbreak, very little is known about this virus and rumors and unsubstantiated claims are running rampant in online communities. We must remember not to panic and rely on factual information from the Chinese and US CDC (Centers for Disease Control and Prevention) and WHO (World Health Organization).

Coronaviruses are a large family of viruses which circulate among animals such as camels, cats, and bats. The 2019- novel coronavirus (nCoV) is most similar to SARS, but is a different virus to that which causes SARS or MERS (Middle East Respiratory Syndrome). The 2019-nCoV causes respiratory illness in people with the potential to spread from person-to-person, although it is unclear on how easily this happens. Based on how other coronaviruses behave, 2019-nCoV transmission is most likely through respiratory droplets from infected individuals, as well as surface transfer to mucosal membranes. Reports of symptoms include fever, cough, shortness of breath, and in severe cases pneumonia in both lungs. Onset of symptoms can occur anywhere between 2-14 days after exposure.

An international response is mounting to contain the spread of this virus, and the WHO has declared this outbreak a public health emergency of international concern (PHEIC), the sixth time they have done so. There have been confirmed cases in 24 countries around the world. Airlines are restricting flights to and from China, and the United States is barring individuals who recently visited China from entering the country. There are similar travel restrictions in Australia, Japan, and Taiwan. Vaccine development is already underway in several countries with testing reported to begin as soon as this summer. A group at the National Institutes of Health (NIH) is targeting the spike proteins that the virus uses to attach to its host cell receptor, ACE2. Although, any vaccine is still a year away at minimum, so we must rely on a swift response from the global community in identifying new cases and blocking routes of transmission if we are to stop this from becoming the next pandemic.

This situation is evolving rapidly, and infection counts and deaths may increase each day. Travel restrictions and policy are likely to change rapidly as well.

For the most up to date information please see the CDC website here: https://www.cdc.gov/coronavirus/2019-ncov/index.html

And at the WHO here: https://www.who.int/emergencies/diseases/novel-coronavirus-2019

New Year, New You: A Guide to Making Your Goals S.M.A.R.T.

Happy New Year, everyone!

There’s a lot of motivation flowing at the beginning of a new year (and, in this case, a new decade!) to set goals — and subsequently crush them. Most often, I quickly find that my dedication to stick with whatever harebrained New Year’s resolution I may or may not have come up with is waning (exponentially decaying with a half-life of about 4.5 days, resulting in only 1% of my original motivation still present and accounted for at the end of January). And while my resolutions have typically focused on personal development, this year I’m turning my attention to the lab.

As graduate students, we’re often spread thin, what with trying to get our experiments done, train new students, and meet with our advisors. Add to that taking classes (at least in your early years), keeping on top of the literature, creating your own literature, and networking, and it’s a wonder that any of us have time to focus on things other than our degrees. What are we to do when we want to set goals and make sure we achieve them?

I was musing over how to write this article over dinner with a friend one evening when she mentioned S.M.A.R.T. criteria. While I’d heard of this acronym before, I never knew exactly what it meant, or how I was supposed to apply it, until she explained it to me. It makes a whole lot of practical sense, so I’m going to pay it forward and share it all with you, in case you were similarly unaware of its meaning and potential.

S.M.A.R.T. criteria were first introduced by George Doran in 1981 (1). In the article he published, Doran states that objective should be [(quoted)]:

            Specific – target a specific area for improvement.

            Measurable – quantify or at least suggest an indicator of
            progress.

            Assignable – specify who will do it.

            Realistic – state what results can realistically be achieved,
            given available resources.

            Time-related – specify when the result(s) can be achieved.

Keep in mind that this article was originally meant for managers with a team. Other sources and articles on S.M.A.R.T criteria use other words (e.g. “achievable” in place of “assignable” and “relevant” instead of “realistic”) (2). For graduate students, using “achievable” might be more realistic than “assignable,” since, unless we’re managing another student, we’re going to “assign” the work to ourselves.

Let’s set an example goal, say, reading more of the literature in a particular field. How can we make this into a S.M.A.R.T. goal? For each letter in the acronym, there will be a list of things to consider and refinement of the goal to include the necessary information.

Specific
Consider the goal, who will be involved, and what your motivation is.

I want to read more papers to gain a better understanding of the role of Wnt signaling in cancer.”

Measurable
How can this goal be quantified? How will you know if you’ve made progress?

“I want to read 20 papers to gain a better understanding of the role of Wnt signaling in cancer.”

Assignable/Achievable
For graduate students, reading 20 scientific journal articles is certainly an achievable goal. So we get a checkmark here!

Realistic/Relevant
Consider what resources are available to help you achieve this goal. Is this goal relevant to your overall objectives (earning a graduate degree)?

Using journal access provided by the university library, I want to read 20 papers to gain a better understanding of the role of Wnt signaling in cancer.”

Time-related
Consider what your deadline is (perhaps you’re writing a review article on Wnt signaling and a section on cancer will be included) and whether it is realistic.

“Using journal access provided by the university library, I want to read 20 papers by June 15th to gain a better understanding of the role of Wnt signaling in cancer.”

Consider this article as a starting point when setting goals. The nice thing about S.M.A.R.T. is it gives you an achievable goal to go after, but the bad thing is it puts you in a structured box, which can prevent you from taking some bigger risks that could really pay off! It’s important to know when your goals need to be more flexible than S.M.A.R.T. criteria allows them to be, but if you, like me, find yourself getting frustrated for setting goals and not achieving them, this may be a good place to start.

References:
1. Doran GT. (1981) There’s a S.M.A.R.T way to write management’s goals and objectives. Management Review 70(11):35-36.
2. https://www.mindtools.com/pages/article/smart-goals.htm

The Red Meat Article Controversy: HAMBURGLER STRIKES AGAIN

Pepperoni pizza. Pulled-pork sandwiches. Burgers. Bacon. These are some of the foods that I miss the most since deciding to reduce my meat consumption to virtually zero servings a week. My decision was environmentally and eco-consciously driven, but many Americans cut back meat consumption due to health concerns. The risk of red meat and processed meat consumption in cardiac disease, cancer, and overall quality of life has thoroughly pervaded the public conscience. But at the beginning of October 2019, a review was released in the Annals of Internal Medicine that recommended not changing current red or processed meat consumption. The authors concluded there is poor evidence linking red/processed meat consumption to adverse health risks, which directly contradicts years of nutrition research.

I’ve never read a lick of nutritional research in my life, but I have enough experience in reading scientific literature to attempt a summary of the review for you here. The authors integrated evidence from studies that included at least 6 months of red meat or processed meat consumption and at least 1,000 participants. They additionally took into consideration the feasibility of reducing meat consumption, the cost of meat consumption, and the personal preference of eating meat for the participants. However, they excluded environmental impact and humane animal practices into their consideration.

The evidence was evaluated with a set of guidelines the authors outlined, which included systematic review and GRADE (Grading of Recommendations, Assessment, Development, and Evaluation) methodology. GRADE is traditionally used in rating clinical drug trials, so that recommendations can be made regarding a drug’s efficacy and safety. GRADE was not designed nor has it been used before in nutritional research. After the evidence was rated in this manner, a “low conflict-of-interest” group of experts and some public members outside of the science community made their recommendations. Their findings weren’t very conclusive; evaluation of the evidence provided little certainty in the risks associated with red meat and processed meat consumption.

The use of the word “certainty” in the article highlights the bias that the authors’ methodology introduces; it is a subjective quality. Our faith in the authors’ discernment depends on our faith in the authors themselves.

How was the group of experts and public members making the recommendation determined to be “low conflict-of-interest”? The panel was asked to disclose any financial or intellectual conflicts from within the past 3 years. Only those with none were invited to participate in the panel. But is 3 years long enough? Dr. Bradley Johnston, the head researcher of the article, has industry ties that lie just outside the 3 year window. The New York Times and the Washington Post reported on this and another author, Dr. Patrick Stover, who has similar ties to the beef industry through the Agriculture and Life Sciences (AgriLife) program at Texas A&M.

In the wake of the red meat article, prominent leaders in the field of nutrition and public health have criticized its recommendation. Prior years of nutritional research have illuminated the risk of frequent red and processed meat consumption in contracting heart disease and cancer. Some experts point to the distrust that this direct contradiction instills in scientific research, whose relationship with the public is already challenged in areas like global warming.

Environmental impact and humane animal practices were among the evidence that the panel did not take into consideration while making their recommendation. How would their recommendation change if they had considered these conditions? The evidence is staggering. Red and processed meat consumption contribute to the accumulation of greenhouse gases through animal agriculture and deforestation. Additionally, while meat consumption is rising across the globe, the stress on water availability, biodiversity, natural ecosystems, and the animals themselves increases as well. Higher demand for red meat has resulted in the sub-ideal conditions for animals that documentaries like Food Inc. have made us familiar with. Cattle, pork, and poultry often have limited access to open pasture and are fed unnatural diets with antibiotics to save money. Confronting this information was enough for me to decide to reduce meat consumption.

For many, incorporating meat into their diet is easier and cheaper than eating a plant-based diet. For those looking to reduce their carbon footprint through what they eat, I suggest purchasing poultry (cheaper) and meat alternatives (increasingly more accessible) over red meat. However, people also care about the nutritional value in their food. The rise in popularity of plant-based meat alternatives can be seen in the fast food industry. Notably, Burger King has released their Impossible Whopper within the last year, which uses an Impossible Burger patty made from soy and potato protein with the crucial ingredient of heme (the molecule attributed with “meaty” flavor). Despite whether it comes from a fast food restaurant or the meat aisle, we should still be reading the nutritional facts before congratulating ourselves on choosing the “healthy option”.

Overall, while doing my research into the red meat article controversy, my take-aways were as follows:

-A panel of experts and members of the public made a recommendation to not change current red or processed meat consumption habits based on a review of evidence that weakly points to adverse health consequences.

-Like most recommendations, this one has sources of bias despite the authors’ efforts to minimize them.

-Human nutrition research also has its own caveats, confounding factors, and complexities. Since researchers can’t control everything that a person eats in a day, we can’t expect a study to be completely accurate.

-Some of the authors have ties to trade industries. Whether those ties influenced the recommendation of the article remains uncertain.

-There are good reasons for reducing meat consumption that pertain less to the health of an individual and more to the health of an entire planet.

Humans of Tufts Boston: Léa Gaucherand, “I Fell in love with research”

Humans of Tufts Boston, 22 October 2019

Léa Gaucherand, Microbiology, Third-year Ph.D. Student: “I Fell in Love with Research”

JH: Thank you so much for taking the time to do this! To begin with, where did you grow up?

LG:I grew up in the North East of France, in a city called Nancy in the Lorraine region. There are many differences between life in France and here; university is very cheap, like 100 – 200 euros [110 – 220 USD] a year. Also, the Ph.D. system is different because it’s only 3 years (you do it after your Master’s). You don’t have rotations, you just apply to one project in one lab and for funding from the government or other agencies.

JH: What were you doing before graduate school?

LG: I actually have a Master’s degree in Health and Drug Engineering and a multidisciplinary Engineering degree (equivalent to a Master’s but it is a weird concept that only exists in France where you do a little bit of everything). As part of my studies I did an internship in bioengineering research at the Infectious Disease Research Institute in Seattle and I fell in love with research (and with someone in Seattle). I went back to Seattle after graduating and started as a volunteer in Dr. Tom Wight’s lab at the Benaroya Research Institute. I then got a technician position in the same institute in Dr. Adam Lacy-Hulbert’s lab, and after two years there I moved to Boston for grad school!

JH: When you first moved to Seattle, did you encounter any culture shock?

LG: I had actually already lived in San Francisco for 6 months for another internship one year before I moved to Seattle, and I had a pen pal from Pennsylvania that I visited for a week in high school. I don’t think I really had any culture shock, it was more the excitement of being somewhere new and fully independent.

JH: How did you first become interested in pursuing science as a career? Was there anything in particular that steered you towards microbiology?

LG: My interest actually came pretty late. I was always good at maths and just liked thinking about science in general, but I had no idea whatsoever what I wanted to do. That’s why I went to the French engineering school I mentioned earlier, to still have a broad science background without deciding yet what I wanted to do. It was only there that I realized I missed learning about chemistry, and the only class I really enjoyed was about human physiology and bioengineering. I took extra classes during my last year to have a more specialized degree, and did the internship [in Seattle] that really opened my eyes about what research was and how much I enjoyed it. It’s only once I was a technician that I worked on viruses. I thought they were the coolest thing so I wanted to learn more about them, and about how they interact and evolve with the host. I applied to a bunch of programs, most of them more virology-focused than Tufts, but I really enjoyed my interview at Tufts Micro. It just felt right.

The Gaglia Lab

JH: What do you like to do outside of lab?

LG: Outside the lab I like to play volleyball (we have a great team at Tufts Micro!). I say it’s a Micro volleyball team but it’s not official at all. Another Micro student, Allison (in the Camilli lab), has a net so we go play with a few people from Micro (and other programs) at the Boston Common in the summer. Everyone is welcome and it would actually be great if we had more players! I also like to watch intellectual movies and travel. My husband showed me two intellectual movies in the past few weeks that I really enjoyed: Burning by director Chang-dong Lee and Shoplifters by director Hirokazu Koreeda. Unfortunately, I don’t have time to travel that much (apart from going back to France twice a year). The last big trip I took was right before moving to Boston, to Panama and Hawaii.

Summer volleyball on the Common

Op-Ed: Rename the Sackler School

Guest Post by Nathan Foster, a recent graduate of Tufts University

The United States is in the midst of a deadly opioid epidemic, with 72,000 people estimated to have died from drug overdoses in 2017 alone. The crisis was caused by the systemic overprescription of opioid pain relievers, fueled by a massive drug industry campaign to downplay the risks and straight-up lie about the dangers of their drugs. Troublingly, it has come to light that Tufts programs were used to promote the opioid industry’s lies.

Purdue Pharma, wholly owned by the Sackler family, is one of the companies most responsible for the opioid epidemic. Purdue makes OxyContin, and for decades they systematically lied about its effects in order to sell more pills at higher doses. As tens of thousands of Americans died, the Sacklers made billions, some of which found its way to the Sackler School of Biomedical Sciences here at Tufts. Although the school was originally founded with donations from three Sackler brothers in 1980, before OxyContin was invented, the Sacklers have continued to give large sums of money to Tufts, including to establish the Masters in Pain Research, Education, and Policy program through the Medical and Public Health Schools in 1999, and the Raymond and Beverly Sackler Convergence Laboratory in 2013.

As the role of the Sacklers in the opioid crisis has become increasingly clear through news reports and the activism of artist Nan Goldin, there has been some discussion about the appropriateness of the school’s name. Tufts’ biomedical scientists dedicate their careers to saving lives, after all, not destroying them for profit. But the conversation has remained relatively abstract, more about the symbolism of good deeds sponsored by bad people than about the concrete effects of the Sacklers’ money.

That has to change now. The Sackler name is no longer an abstract morality problem, if it ever was, but a full-blown crisis of academic integrity. According to a lawsuit from the Massachusetts Attorney General’s office, Purdue Pharma used the Sacklers’ donations to systematically corrupt Tufts’ curriculum and research in favor of opioids.

The Attorney General’s allegations are mind-boggling. Purdue employees placed unlabeled curriculum materials in Sackler School courses, and talked afterwards about “penetrating this account.” A seminar on opioids in Massachusetts was regularly taught by Purdue staff, and Tufts helped the company develop pro-opioid materials for patients. The head of the Masters in Pain Research program spoke in favor of Purdue at FDA meetings in 2012 and 2013. Purdue sent staff to Tufts “regularly,” as recently as 2017. The CEO of the company wrote to President Monaco in 2017 “to promote Purdue’s contentions about opioids and offer to meet,” though the lawsuit does not say President Monaco took him up on the offer. And all this happened after Purdue Pharma was fined $600 million in 2007 for misleading regulators, doctors, and patients about OxyContin’s potential for addiction and abuse. 

“The Sacklers got a lot for their money” at Tufts, the lawsuit asserts. “The MSPREP [Masters in Pain Research] Program was such a success for Purdue’s business that the company considered it a model for influencing teaching hospitals and medical schools.”

To be clear, Tufts is not the only institution alleged to have been improperly influenced by Sackler money. Following millions in donations, Massachusetts General Hospital even named its pain program after Purdue Pharma—then changed the name as the scale of the opioid crisis became apparent.

Last week, Attorney General Maura Healey stated that Purdue Pharma and the Sackler family are “one and the same.” It is not possible to separate the Sackler name from the crimes of the company that made them billions.

It is disturbing that the makers of OxyContin had such deep influence over research and education at Tufts. In addition, Purdue and the Sacklers’ close connection to a leading biomedical research institute allowed them to maintain credibility in the medical community for years after it was clear their product was killing people. It is too late to save the hundreds of thousands of Americans whose lives have been lost to the opioid epidemic. But Tufts can act now to undo some of the damage it has caused.

First, Tufts needs to immediately change the name of the Sackler School. Faced with lawsuits and protests, the Sackler family and Purdue Pharma can still draw credibility from having their name attached to one of the country’s top biomedical schools. The recent resurgence of the tobacco industry shows that the makers of deadly drugs will seize on any remaining scraps of credibility to push their product. We cannot let that happen.

Second, Tufts must establish a commission of medical professionals, students, and members of the addiction advocacy community to thoroughly review all improper connections to Purdue and the Sacklers, past and present, including but not limited to those alleged in the Attorney General’s lawsuit. The results of the review should be made public. Given the extent to which Tufts’ academic integrity is alleged to have been compromised, a fully transparent review process including students and addiction advocates is the only way to genuinely move forward. As an added benefit, the students involved will get an excellent education in the sociopolitical determinants of health.

Third, Tufts must file an amicus brief in support of the Massachusetts Attorney General’s lawsuit against Purdue Pharma and members of the Sackler family.

Finally, Tufts must implement clear guidelines to prevent any donor from compromising its academic integrity in the future.

Editors’ Note: The views of the author do not necessarily represent the views of the Sackler Insight editorial board or that of the Sackler community. Below is an official response from Patrick Collins, Executive Director of Public Relations at Tufts. 

Tufts University has always been and remains deeply committed to the highest ethical and scientific standards in research and education. The information raised in the Attorney General’s lawsuit against Purdue Pharmaceuticals and other defendants is deeply troubling. We will be undertaking a review of Tufts’ connection with Purdue to ensure that we were provided accurate information, that we followed our conflict of interest guidelines and that we adhered to our principles of academic and research integrity. Based on this review, we will determine if any changes need to be made moving forward.