Category Archives: Community

Coffee, Conversation & Intersectionality

Guest Post by Alyssa DiLeo (Neuro)

If you’ve listened to Beyonce’s self-titled 2014 album, you’ll recognize the definition of a feminist as a person who believes in the social, political, and economic equality of the sexes. What this definition misses is the importance of intersectionality, a framework that attempts to identify the intersecting social factors, like race, gender identity, sexual orientation, age, class, and education, that impact marginalized populations. At GWiSE’s November Coffee & Conversation, we welcomed PhD student Molly Hodul, who attended a Harvard event addressing Intersectionality in STEM and discussed what she learned and how to an active ally in the fight for social justice.

Historically, feminism has mainly served white women who centered and upheld their own voices instead of prioritizing experiences of all women and women identifying populations. This can most easily be seen in the history of voting rights in the US. Non-white men and freed male salves were “allowed” to vote in 1870 through the 15th amendment, but Jim Crow and voter suppression laws kept many from exercising their right. The 19th amendment in 1920 gave the right to vote to women, but similar restrictions applied to poor or non-white women. Native Americans weren’t allowed to vote and keep their tribal affiliation until 1924. It wasn’t until the 1960s that the poll tax was prohibited and the Voting Rights Act of 1965 protected voting rights for racial minorities. Here, it’s simple to see how race, gender, and tribal association affected marginalized groups, both separately and together.

Kimberle Crenshaw first coined the term “intersectionality” in 1989 in her paper for the University of Chicago Legal Forum, but many black activists had advocated for intersectional principles. Sojourner Truth made parallels between her abilities and those of men in her speech to the Women’s Convention in Ohio in 1851. Audre Lorde said in a 1981 speech “ I am not free while any woman is unfree, even when her shackles are very different from my own. And I am not free as long as one person of Color remains chained. Nor is anyone of you.”

Around the same time, Shirley Malcom conducted the Double Bind study that showed that discrimination of minority women shifted from race based to gender based as they moved into post college training or graduate school. Over 40 years later, women of color are facing more subtle obstacles and microagressions in academia. Overt racist and sexist laws may not be in place anymore, but academic institutions can make statements through their action or inaction in the face of discrimination. Historically, science has also been used to uphold patriarchal white supremacy, something we’re still seeing as the alt right co-opt genetic studies for their agenda, which causes mistrust among minority populations. The failure of science to credit and teach the work of underrepresented minorities in science also adds to this problem.

So, what can scientists and scientific institutions do to actively be an ally for social justice? For one, we can acknowledge our own biases; Harvard has some great implicit bias tests here. When we are real about our bias, we can begin to unlearn these automatic associations we make about groups of people. Intersectionality must focus on the most vulnerable and others must work to uplift and amplify their voices. Most importantly, we, and by “we” I mean white people, must go into our communities and teach these intersectional principles because that is where the work needs to be done. As the holidays approach, find the courage to speak up to that “old fashioned” grandparent or racist uncle. Be a scientist and fight ignorance with facts.

If you’re interested in getting involved with GWiSE, follow us on Twitter @TuftsGWiSE, like us on Facebook, or email us at tuftsbostongwise@tufts.edu.

New Initiative on Campus Seeks to Tackle Mental Health Issues among Grad Students

For a long time, it was a generally accepted trope in academia that graduate students must endure harsh conditions, intellectual and emotional, before they are granted their PhD degrees. This is supposedly meant to build character, and weed out those who are not fit for the rigor and stress one encounters in academic research – a trial by fire of sorts. The ones who survive these conditions and emerge victorious, also internalize such hazing and come to think of it as just the regular pressure of working in academia.

It is therefore not surprising that the mental health of graduate students have not been discussed very much except in the recent years. While it has long been a subject of humor, such as PhD Comics and memes such as Shit Academics Say, it is only recently that the severity of the problem has been brought to light. In 2013, a series of articles regarding graduate students’ mental health was published on the GradHacker blog. In a guest post, Nash Turley, then a PhD candidate in evolutionary ecology at University of Toronto, looked at studies focusing on the major mental health issues graduate students face – anxiety, depression, suicidal thoughts, going as far back as 1997, and deduced that “mental health issues are the biggest barriers to success among graduate students.”

Earlier this year, a study published in the journal Nature Biotechnology by , described the mental health issues among graduate students as a “crisis”, highlighting the prevalence of anxiety and depression. After surveying 2,279 graduate students representing 26 countries and 234 institutions, the study found that graduate students are six times more likely to suffer from moderate-to-severe depression compared to the general population. The study also found that female, trans and gender-non conforming (GNC) students were significantly more likely to experience anxiety and depression than their cis male counterparts. Among the students with anxiety and depression, more than half did not felt valued by their mentors and half did not agree that mentors provided emotional support (only a third said yes). The study proposed some short term solutions, such as providing trainings to faculty and administrators by mental health professionals, similar to the NIH’s “train the trainers” program. For a longer term solution, the authors advocated for “a shift of the academic culture to eliminate the stigma and to ensure that students are not reluctant to communicate openly with PIs.” The notion of suffering has been internalized by graduate students to the point that in a latest study conducted among five hundred economics graduate students across eight institutions, the students who scored worse than average on a mental-health assessment tended to think that their mental health was better than average; among those who reported having suicidal thoughts, 26% assumed that their psychological well-being was better than the norm. In both studies, the major driver of such mental health issues seemed to be a combination of financial worries and the professional pressure to publish, both of which are products of the tight budget climate and the “publish or perish” nature that academia has recently taken on.

Alyssa DiLeo, a second-year graduate student in the Neuroscience program, is well aware of mental health issues graduate students face; she has faced them personally as well. “Graduate school is a hard transition for many people and even more difficult when they don’t have a support system. Mental health issues are also highly prevalent in graduate students. Levecque et al. published a study in May of 2017 reporting one in two PhD students experience psychological distress and 1/3 of graduate students are at risk for a psychiatric disorder. An online survey of graduate students in a recent March 2018 study by Evans et al. reported that graduate students are more than six times as likely to experience depression and anxiety compared to the general population. After taking a few years off before entering graduate school, I’ve definitely found myself struggling to transition from an employee to a graduate student and was finding it hard to find the right support.” She became aware of an initiative called Resources for Easing Friction and Stress (REFS) at MIT while attending a Graduate Women in Science & Engineering (GWiSE) event at Harvard, and was inspired to start a REFS program here at Sackler called sREFS (sackler Resources for Easing Friction and Stress).

The goal of the sREFS initiative is “to provide an easily accessible outlet for graduate students to talk about conflicts, issues, or stressors in their lab or personal life.” Currently, there are few options that Sackler students can peruse if they are having mental health issues – the Wellness Center which puts out events for the whole TUSM community, the Student Advisory Council of the Wellness center (which just got a Sackler rep on their board), or their friends and other graduate students at certain social events. Mentoring circles, another peer-based support system started by Sackler students and alumni for networking and career development, could be another option. However, Alyssa noted that while Mentoring Circles provided “a great networking resource with experienced mentors”, “sREFS aims to create a more one on one private conversation between students about mental health in graduate school.” This initiative also hopes to serve as the first contact for first year students who may have questions about the school or its programs, courses, etc. Additionally, sREFS will be trained on mediation and conflict management skills that may prove valuable in their own labs or workplaces post-graduation.

The sREFS initiative is a pilot program, proposed by Alyssa in conjunction with Sharon Snaggs from the Wellness Center, and has gained the support of the Dean’s Office and the Graduate Student Council. The process to become a sREF involves an 8-hour training spread out over 8 weeks, and is modeled after MIT’s REFS program. While the MIT program offers a certification after 40 hours of training provided by professionals, the sREFS initiative has a smaller scope and is more flexible given the student body size and available resources at Sackler. Once trained, sREFS will be expected to hold office hours for one-on-one conversations, and sREFS are also mandatory reporters and are liable to report any cases of harassment or similar incidents to the administration. At the inaugural meeting on Thursday, Nov 29, Alyssa mentioned that the only exclusionary criterion for becoming a sREF is enrollment as a PhD student, since continuity and consistency are important for this initiative to succeed. The sREFS will be allowed to keep anonymized and confidential notes only after getting consent from those who are speaking with them. These notes may also help identify the common issues prevalent among Sackler graduate students and help sREFS recommend programs to administration to tackle such issues. In case of any conflict of interest, sREFS may recuse themselves from certain cases; Alyssa would like to see at least one graduate student from each program volunteer as sREFS to avoid such conflicts. Given that this role incurs emotional stress on the volunteers, sREFS can also take time off from the initiative.

Interested students are asked to email Alyssa at Alyssa.DiLeo@tufts.edu to receive an application packet. The application deadline is Jan 15, but is also flexible since the initiative would like to be as inclusionary as possible. The sREFS initiative is also looking for volunteers to fill in positions on the executive board to help with logistics and planning. Unsurprisingly, all the current volunteers are female, as emotional labor most often falls on women in this patriarchy, and it would be great to see the male graduate students do their part as well in this timely, community-based initiative.

NIH’s efforts to fight sexual harassment fall short of expectations

On October 21, the National Science Foundation’s (NSF) new policy to fight sexual harassment in science went into effect. This policy requires institutions that receive NSF funding to report to the agency any findings related to sexual harassment, including coercion, assault and other forms of harassment (as defined here), by principal investigators (PIs) and co-PIs, within ten business days of the report. This policy also requires the institutions to report any administrative actions that have been taken against such PIs, including putting them on a leave during an investigation. This policy, originally drafted in February of this year, will apply to any new grants and any extensions to existing grants made on or after that date, and is considered as the “strictest action yet by a US research funding agency” to fight sexual harassment.

In comparison, the NIH’s new efforts to battle sexual harassment pales when held up to the NSF’s new policy. Several months after the NSF’s initial undertaking to design their policy, NIH Director Francis Collins unveiled the new anti-sexual harassment website containing a centralized reporting system for sexual harassment and violence, and updated policies that would apply to the institutions that receive NIH funding. These policies require the institutions to also develop and foster an environment that prevents gender violence, increase accessibility to reporting of incidents, respond to any reported incidents and notify the NIH in case of status change of the PI/co-PI on existing grants.

While these policies seem sound, a comparative analysis between NSF and NIH’s efforts reveal the lukewarm nature of such policies. The NSF requires that the agency be notified by funded institutions whenever a PI/co-PI has been placed on administrative leave, faces any administrative action related to the incident, or is under investigation for violating the award policies or the codes of conduct related to sexual harassment. In contrast, the NIH only requires that it be notified when there is a change of status for the PI/co-PI (a change of status is required when a PI/co-PI is no longer able to substantially contribute to the research efforts of the grant awarded). In addition to requiring that incidents be reported within ten business days, the NSF also has a review process for evaluating such incidents. The NIH has no such timeline, provides no guidance on investigating such incidents, and has no proper review process in place for determining the course of administrative action. It should be noted that both the NSF and NIH are dependent on the investigation performed by the alleged perpetrator’s host institution, which is a problem in itself given how universities seem reluctant to pursue sexual harassment cases.  

The starkest difference between the NSF and NIH policies seems to revolve around the question of what will happen to the funding situation for the alleged perpetrator if they are to be found in violation of the codes of conduct. Under the NSF policy, the PI/co-PI can be either removed from/substituted in the award, or have their funding amount reduced, or have their award suspended or terminated. However, in the FAQ section of the new NIH website, the question of removal of funding is described as a “complex issue” and refers to an existing policy requirement that is not specific to gender violence and sexual harassment issues. NIH Director Francis Collins pointed out that NIH grants are awarded to “institutions, not to individuals”; he also mentioned that due to the legal constraints the NIH faces since it is under the Department of Human and Health Services (HHS), immediate termination of the perpetrator’s funding cannot be applied as it can from the NSF, which is an independent agency.

Critics argued that Collins’ rationale appears contradictory and unclear. NIH policies allow grantees to transfer their funding when they change institutions, which is directly opposite to his statement that NIH grants are awarded to institutions and not individuals. Additionally, there are other mechanisms that the NIH can use to address time-sensitive issues, such as those of sexual harassment when they threaten the safety of scientists. The disappointment and frustration expressed towards NIH’s lukewarm efforts to fight sexual harassment is amplified by the fact that Collins had announced this topic to be on his agenda back in 2016. Critics pointed out that if the NIH had actually started working on this issue when they promised, they would have already made progress with the the complex rulemaking process. Collins has promised to work with the government and his counterpart in NSF, France Cordova, to work on these issues.

The issue of gender violence and gender bias in STEM fields have taken a center place with the burgeoning #MeTooSTEM social media movement. It was given a more concrete place in policymaking with the report from the National Academy of Sciences, published on June 12, that showed how pervasive these issues are, the failure of current Title IX policies, and the absence of any specific policies to address them. In this report, female STEM students in the University of Texas system reported higher levels of sexual harassment and related issues compared to non-STEM majors, with the highest level in Medicine; similar trends were found when female graduate students in the Pennsylvania state system in a separate survey. The report also showed how sexual harassment is also harming careers and driving women away from pursuing scientific careers altogether. All this data build on previous research which showed that prevalence of sexual harassment in academia stands at 58%; women of color, LGBTQIA and gender minority folks experienced a higher rate of harassment. The NIH’s new policy does not take into account the barriers victims face when reporting incidents of sexual harassment and violence due to established power dynamics and the pervasive patriarchy in society; nor does it take into account that it is more often than not that the victim suffers in their professional careers more than the perpetrator. The latter is exemplified in the case of the tobacco researcher at UCSF, who has been found guilty of sexually harassing a post-doc (although the perpetrator has denied responsibility), but is still employed and lauded by UCSF for winning a large NIH grant, whereas the post-doc had to leave the university and her work has not been published. This only adds to the argument as to why the NIH needs to take serious action against perpetrators and not reward them further with more funding. 

Scientists are not just waiting for NIH to catch up on the times to fight gender violence – Beth McLaughlin, the founder of #MeTooSTEM, and others have launched a petition to Francis Collins to stop funding perpetrators of sexual misconduct. Julie Libarkin has created a detailed spreadsheet of publicly available information on sexual misconduct in academia. Maryam Zaringhalam and Angela Saini are trying to bring Saini’s book Inferior, which details how gender bias in STEM fields have been constructed over decades, to public schools in the US to educate the youth, and especially encourage girls to pursue scientific careers. These trailblazers are, unsurprisingly, all women. It is also critical to note that neither these policies nor a critical examination of the pervasiveness of sexual harassment in academia would have come to light without these young women scientists blowing the whistle at great risk of their careers. Ultimately, the effects of gender violence and gender bias affects all sexes, and we should all be doing our part, especially the male scientists, to fight against it and not leave the burden on those who are affected by it the most.

Career development initiatives, curriculum design, & building networks discussed at Sackler Community Meeting

This past June, around seventy-five graduate students and faculty members joined Dean Dan Jay and Associate Dean Dan Volchok in the DeBlois Auditorium to reflect on the previous year’s progress and endeavors at the Sacker School. Various community leaders briefly presented on topics that reflect the Deans’ new mission of training to career excellence followed by open discussion between all attendees. Following the larger meeting, attendees continued to engage in these topics in smaller groups over lunch to continue pushing these goals forward in the coming year.

Jay opened the meeting by reviewing the results of career development “trial balloons” that the new administration worked towards last year. He celebrated the high interest and positive reactions from trainees for the new short courses, including Introduction to Drug Development (50 attendees), Navigating the Corporate Environment (22 attendees), and the R Programming Workshop (34 attendees). Building on this positive momentum, additional short courses will be offered in the coming year. A ‘science storytelling’ workshop and an entrepreneurship short course have been developed for the fall semester, with a teaching short course planned for the spring. There are also plans to develop the Introduction to Drug Development course into an official Sackler-wide elective for the spring semester. In addition, two career counseling workshops by Sarah Cardozo Duncan will again be offered in the 2018-2019 for students and post-docs who are interested in industry-related careers.

Not all career development endeavours in Sackler last year had such immediate success, however. The initiative to place students who have completed Year 1, Year 2, or their thesis requirements in summer industry internships encountered several difficulties, including reluctance from potential partner companies. That reluctance mainly stemmed from aversion to such a short internship time period (3 months), as several companies in conversation with Sackler administration requested at least a 6-month full-time commitment from students. Meeting attendees generally agreed that this length of time would be difficult for both PIs and students to commit to without serious disruption to research progress. However, there was at least one successful internship negotiation and placement, suggesting that the program may still be developed but not in as broad a manner as originally intended. A case-by-case determination was concluded to be the best approach moving forward, with the requirement for extensive conversations and mutual agreement between student, PI, and hosting company on timeline and degree of commitment being emphasized.

In reiterating his desire to see Sackler become a leader in career training for biomedical graduate students, Jay described his aspiration to develop a tuition-bearing, two-year master’s program in Biomedical Leadership. Matriculating students would have the opportunity to train for various career tracks related to biomedical research, and their curriculum would include current and future career development short courses or electives offered within Sackler. During the group-wide discussion session, the possibility of offering a 4+1-style master’s program in collaboration with the undergraduate branch of Tufts University was put forward and positively received.

Another main topic of the community meeting was the state of graduate research training at Sackler. Opening discussions involved debating the merits of switching from the current program-specific curriculum design to a single core curriculum that all first-year graduate trainees–regardless of program–would take. Across programs, students generally were opposed to a core curriculum in regards to scientific content, emphasizing that most seek a graduate education specifically to specialize in a particular area. They did support the suggestion that any core courses in scientific content should be ‘nanocourses’, instead of full required or elective courses. In contrast, developing a skills-focused core curriculum that included classes such as research methods, quantitative biology & bioinformatics, and statistics seemed to have wide support from both students and faculty.  In addition to curriculum content, the possibility of expanding the MERGE (Medically-Oriented Research in Graduate Education) beyond the Immunology and Molecular Microbiology programs was discussed. The MERGE program trains participants in clinical aspects of their research area during the summer prior to their first graduate year at Sackler. During this time, they are also paired with a clinical mentor who provides them direct contact with patients and clinicians and serves as a thesis committee member during their research training. Given the proximity of Tufts Medical Center, it was advocated for the Sackler School to take advantage of the opportunity to give more PhD students training in regards to the clinical impact of their research. Genetics and Neuroscience were considered as programs which MERGE could expand to, but no specific plans for that expansion were discussed.

Strengthening the Sackler community was also a significant theme of the meeting. During a discussion about building diversity and inclusion at Sackler, students expressed the need for more structured support from the school. They expressed that while student-led initiatives such as SPINES (Students Promoting Inclusive Excellence at Sackler) provide excellent resources and opportunities for underrepresented minority (URM) students, the responsibility of delivering such support should not fall so heavily on the trainees themselves. Through this discussion, it was emphasized that bringing more URM junior faculty–from Tufts or other institutions–to speak at graduate seminars could help build networks for students to rely on. In addition, hosting a greater number of Sackler-wide events during the year, especially during recruitment, could foster a greater sense of community and provide more school-directed opportunities for URM individuals to connect across programs. Another discussion about community building focused on developing stronger alumni networks. The career development short courses were one way in which the Dean’s Office started on this initiative already. Various alumni contributed their expertise and their time to the courses’ development and operation, which was key to their success; this arrangement also provided a structured environment in which students could take the opportunity to develop professional connections with alumni in their career areas of interest. Given the positive outcomes from this year using this approach, there are plans to build on this foundation for similar endeavours in the future. Dean Jay also discussed his efforts over the last year in reaching out to Sackler alumni for fundraising, which he had done in collaboration with Roxanne Beal from the School of Medicine’s Office of Advancement and Alumni Relations. To broaden this effort, faculty were encouraged to reach out to their former trainees, and the group supported the idea of current students reaching out to alumni for an annual fund.

Overall, the morning and lunchtime discussions provided great insight into the past year’s success as well as highlighted what aspects of graduate training at Sackler still need to be strengthened, and the dialogue between students, faculty, and staff generated actionable items for the administration to take on in the coming academic year.

Relays Re-Play

On June 8th, Graduate students, postdocs, and faculty from all programs and departments flooded from the lab to the Medford campus for the 23rd Annual Sackler Relays, our yearly day of fun-in-the-sun and fundraising for the Student Activity Fund.

With cooler weather than last year, speed-inclined scientists competed in a 100 m dash, a 1 mile race, and the annual event’s namesake, the 4 x 200 relay. A few especially spirited labrats were spotted warming up prior to these events, but competition between the programs remained good-spirited and  friendly throughout the day. Contenders and attendees alike relaxed and enjoyed a buffet of delicious food and drink between the footraces and the team events.

Dodgeball made a triumphant return with new dodgeballs this year, which were a sturdy candlepin size rather than full kickball-size. Simultaneous brackets for dodgeball, volleyball, and tug-of-war ensured maximum participation from each team. In a great show of teamwork, the MD/PhDs stole back tug-of-war victory from CMDB, last year’s tug-of-war champions. The day’s events ended with an obstacle course consisting of a potato sack race, three-legged race, dizzy bat, and an egg-and-spoon race.

With race times recorded and sporting points tallied, Microbiology emerged at the front of the pack. Congratulations, Micro!

Last of all came the presentation of the raffle prizes, including gift cards to Boston Burger Company, tickets to the Somerville Theatre, and from the Celtics, two drinking glasses and a piece of the parquet floor! A full list of raffle prize donors can be found below.

As always, Sackler Relays would not be possible without help from the Dean’s office and the numerous faculty and alumni donors. Thank you to Claudette Gardel and Yusuf Mal for team and event photos, and a big thank you to everyone who participated. Let’s make it even better next year!

Thank you to our local and corporate donors:

Boston Burger Company

Fajitas and ‘Ritas

Slumbrew

Roche Bros.

Sweetgreen

Subway

Boston Celtics

Museum of Science

Somerville Theatre

Rock Bottom Restaurant & Brewery

Institute of Contemporary Art

Tufts University Bookstore

Marathon Sports

Boston Kitchen Pizza

Corner Pub

Al’s South Street Café

Aeronaut Brewing Company

Flour Bakers and Café

Brew Café Boston

MJ O’Connor’s

Bao Bao Bakery

Double Chin

Chicken & Rice Guys

Dunkin’ Donuts

The March for Science is Futile & Performative

On April 14, the March for Science 2018 took place in the Christopher Columbus park at the waterfront. This year’s march was definitely smaller than last year, with a small crowd braving the cold winds on a cloudy day to attend a rally that focused largely on climate change. Despite my reservations of the possible outcomes of the march based on last year’s march and its complications, I attended the rally in support of what I believed to be an effective organizational method. However, I was bitterly disappointed. The March for Science, once again, proved itself to be futile and performative.

Much has been said and written, memes have been made and shared widely across social media in support of evidence-based policy and Science, and scientists have braved the ballot boxes in recent political races. All of this has been built around the mantras of “Stand Up for Science”, “I believe in Science”, and “What do we want? Peer-reviewed Evidence”. However, the core problem with these slogans is that they are effectively apolitical. And this is not even a new problem – last year’s March organizers were plagued by questions of why they had a diversity statement and public arguments that “Science” should not be politicized. Incidentally, at this year’s march, there were a few people gathered around a sign about Republicans supporting Science, enforcing the false dichotomy that Democrats as a political party are more likely to believe in scientific evidence. Furthermore, the rally seemed to have canvassers for liberal candidates running for various political offices, almost all on the Democratic party ticket, and some speakers openly advocating rally-goers to vote for specific candidates. But what was absent in the rally was a core political agenda, or any agenda for that matter, besides how bad Climate Change is getting and how the Trump administration is so evil.

Nowhere was there any mention of the environmental problems that the locale are facing, e.g. – Governor Charlie Baker’s bill that would privatize water bodies in MA, or the clean water crisis in the Norfolk state correctional facility where inmates have not had clean water for several months now. While MA is often lauded as a progressive state that promises carbon neutral buildings and other environmental regulations, in reality, that is not the case. For example, the city of Boston recently approved a pipeline that will bring in fracked natural gas from Pennsylvania to a luxury condominium complex in back bay. While there has been resistance from the MA administration against the Bureau of Ocean Energy Management’s plan to open up offshore drilling in a million acres in the Outer Continental Shelf, the language around the protest was framed in a NIMBY manner specifically for MA, as if oil spills anywhere else in the East Coast won’t be affecting the MA coast.

Without a coherent political agenda, it doesn’t mean anything to “Stand Up for Science” or to “Believe in Science.” This is mostly because while data itself can be neutral, study designs and interpretations/analysis of said data are not. As science historian Naomi Oreskes details in her book “Merchants of Doubt”, the same data has been manipulated by climate change deniers, who were scientists themselves. And the raison d’etre for these people were their political beliefs. Similarly, “peer-reviewed evidence” has been historically manipulated for profit motives, political gains and social beliefs that have resulted in the detriment of the human condition, in particular, those of the marginalized communities. In fact, the very idea of “Believing in Science” or considering that Science is apolitical elevates Science to an infallible and monolithic level, which undermines the very basis of the Scientific Method. Unfortunately, the consequences of such actions are already evident in the corruption of scientific research with a capitalist competitive model driving a rise in fraudulent publications of so-called “peer-reviewed evidence”. This capitalist motive further enhances the alienation between scientific fields, with certain fields that have direct output towards driving an imperialist capitalist machinery gaining more funding than some other fields.

In the last year or so, multiple scientists have come forward and braved the ballot boxes and continue doing so (the most recent example being Valerie Horsley from Yale who just gave a talk at Sackler to the CMDB program). And some of them seem to be winning as well. But it should take more than just being a scientist to win an election – the implicit assumption of being a scientist is that you will do the best for people. However, this utopian idea regarding scientists as only acting in the best interest of the people is quite frankly a naïve one. Yes, we should be electing more scientists into office, but we shouldn’t let that identity just be our standard. We should also be critically reviewing their political platforms and see if they are indeed, backed up by evidence and would act in the best interest of ALL people.

On April 14, the same day as the March for Science, David Buckel, a prominent LGBT rights lawyer and an environmental activist, committed suicide by self-immolation in Prospect Park, Brooklyn, NY. It was an act of resistance to convey the urgency of the impending doom of climate change, and an act of anguish that conveyed the pettiness surrounding the nuanced haggling of carbon tax and trading, strategies that are insufficient to bring forth the changes we need to reverse the tide of climate change. In order to do so, as scientists and individuals, and as part of a collective community, we need to acknowledge that Science, like any other human process, is vulnerable to political and economic motivations. Furthermore, any organized efforts to curb climate change or create evidence-based policy, should strive to have a coherent political agenda, to avoid being futile and performative.

What Does the Sackler Name Mean to You?

Guest Post by Andrea Koenigsberg (Micro)

My favorite t-shirt is heather-grey and reads “SACKLER” across the front. It’s not just my favorite because it’s objectively the softest, but because it’s one of the token articles of clothing in the bookstore that is exclusively for Sackler students. All other clothing and paraphernalia generically represents Tufts University or is emblazoned with the names of the medical, dental or nutrition schools. None of those correctly describes my identity within the Tufts community. Don’t worry, I’m not going to have a school identity crisis over a t-shirt. The Sackler School of Graduate Biomedical Sciences is how we can identify ourselves within Tufts University and distinguish ourselves from the medical or dental schools, since neither of those would be accurate. While I have been proudly wearing my Sackler t-shirt for years now, I have more recently become conflicted about this pride.

For many Sackler students the Sackler name may not resonate beyond the name of their graduate school. Some may have noticed other buildings, schools or museum wings with the same name. However, very few people know anything about the Sackler family beyond the fact that they are wealthy. But, how many people have wondered where all of that wealth comes from?

Last fall, the New Yorker magazine published an article by Patrick Radden Keefe titled “The Family That Built an Empire of Pain”, telling the history of the Sackler family and how they got to where they are today. I highly encourage all Sackler students to read the article at some point, but the main points will be summarized throughout the rest of this article. The Sackler family has three main branches that stem from the three brothers Arthur, Raymond and Mortimer Sackler. While all three brothers were doctors, Arthur Sackler also had a propensity for advertising; Arthur is primarily responsible for how pharmaceutical companies market drugs these days. He shifted the marketing focus from the patients to the doctors, no longer relying on patients to request prescriptions from doctors. Years after Arthur Sackler died, the pharmaceutical company owned by his brothers, Purdue Pharma, developed OxyContin. Raymond and Mortimer used Arthur’s marketing strategies to make OxyContin a blockbuster drug. The company today is still privately owned by the descendants of Mortimer and Raymond Sackler.

The Arthur M. Sackler Center for Medical Education on Harrison Ave.

For those who are unaware, OxyContin and other highly addictive narcotic painkillers have led to over two hundred thousand overdoses in the United States since the late 1990’s.  Often times, people become addicted to prescription painkillers like OxyContin and eventually switch to using a more affordable drug such as heroin. More people died from opioid overdoses (42,000) in 2016 than automobile accidents (40,000) or gun violence (38,000). The percent change in number of opioid related deaths continues to rise, increased 28% from 2015-16, compared to only 16% from 2014-2015.  

While OxyContin is not responsible for all opioid overdoses, it was the first drug to capture majority of the long-acting opioid market. How did OxyContin become so “successful”? Through a combination of adept marketing to physicians and misrepresenting just how addictive the drug could be – “the marketing of OxyContin relied on an empirical circularity: the company convinced doctors of the drug’s safety with literature that had been produced by doctors who were paid, or funded, by the company”. Basically, Purdue Pharma was well aware of the addictive properties of OxyContin and did whatever they could to get it prescribed to as many people as possible. The Sacklers are now one of the richest families in the country.

The article importantly points out that while the Sacklers donate to an extensive list of charitable causes, the opioid epidemic is notably not one of them. When I learned last month that a high school classmate of mine died from an opioid overdose I can’t help but feel a little frustrated that my PhD will always be associated with the name Sackler. The Sackler family has been accused of creating the current opioid epidemic and, in similar fashion to the NRA, Purdue Pharma will argue against any suggested restrictions on prescribing painkillers – “Purdue insisted that the only problem was that recreational drug users were not taking OxyContin as direct”.  This argument just shifts the responsibility away from the company and onto the individual. This sounds awfully similar to the NRA’s stance on gun ownership. Wouldn’t we feel more uncomfortable if our school was named after the head of the NRA? Of course, so what’s the difference? The difference is that the general population is naïve to the role the Sacklers played in creating, and continue to play in perpetuating, the opioid crisis. Until this awareness spreads, the Sacklers will continue to be seen as philanthropists who generously support the arts and sciences. Does the source of the money matter if it used for good? Does it negate the harm they are causing?

Most of us have found ourselves as students at the Sackler school not just because of our love for science and learning, but also because of the desire to help people and make a positive impact on society (no matter how easy it is to forget that at 10PM when yet another experiment has failed). Is there a conflict between what we work on and the reputation of our school’s namesake? I realize just because our school is named after someone does not mean we support them or their beliefs. But at a time when schools and professional teams are changing mascots and renaming buildings because of actions that are no longer socially respected, it is worth thinking about whether something around here should change. Keefe importantly points out in his article that the buildings that are getting renamed were in honor of someone who is no longer alive, and in some instances have been dead for centuries. This actually raises two larger facts: (1) those people were alive at a different time and their actions could be excusable due to changing societal beliefs and (2) these people are dead and are no longer active donors.  It would be more noteworthy to rescind a donation from a current donor.  

At this point I will clarify that all three brothers contributed to the school’s founding in 1980, long before OxyContin ever reached the market. Additionally, according to a university spokesperson, a significant gift came specifically from Arthur Sackler in 1983 and the Sackler building (the medical school building) is named for him. As mentioned above, Arthur Sackler did not have anything to do with sale of OxyContin per se, since he died before it was produced, and his branch of the family has actually distanced themselves from the other two branches. Even though the initial funding for the school was independent from OxyContin sales, the school still receives money from other branches of the family whose wealth continues to come from OxyContin revenue, for example the gift for the Raymond and Beverly Sackler Convergence Laboratory.

I am not here to start a movement to change the name of our school or other Sackler institutions. Far from it. I just want to start a discussion I think is important for us to have as students who have benefitted from the Sackler family’s wealth. In the last year or so it has become abundantly clear how essential it is for us to educate people on the importance of science and research, and I think it is equally as important for us to help spread knowledge about a current crisis, especially one that hits close to home. Massachusetts is amongst the top 10 states with the highest rates of opioid overdoses, a rate more than twice that of the national average. If nothing else, I just want you to think about who and what you are representing the next time you wear your Sackler fleece down the street.

Relays Are Coming – Graduate Student Council Holds Open Meeting

The Sackler Graduate Student Council (GSC) held an open meeting last week, on April 5, 2018. The turnout was good – every program had at least one non-GSC student at the meeting. “We want people to know what we do,” Rebecca Silver, our current GSC President, stated.

GSC meetings generally begin with an update from the treasurer, a monthly recap from the three sub-committees (Career Paths, Social, and Outreach), and conclude with action items. As the environment was low-key, non-GSC attendees comfortably offered thoughts and ideas on a variety of matters. If you want the low-down on what events the sub-committees have planned, check out The Goods email (arriving in your inbox weekly).

Sackler Relays was a big topic at this particular meeting. The event has been set for June 8th (mark your calendar!) and subjects ranging from raffle prizes to activities to food were discussed. A popular idea was to potentially have a faculty team for the first time – who doesn’t like a little friendly competition? All in all, a productive meeting. “And at the end of the day,” Silver said, “everyone got some free pizza!”

Chatting with the non-GSC attendees after the event, it was clear that many were curious about the kind of delegation that occurs on the council, wanted to have input, or were interested in becoming a representative for their program in the future. Just remember, according to the bylaws, all GSC meetings are open, and you can get in touch with your program rep(s) if you’re interested in attending regularly. GSC wants to hear your ideas!

Relays Are Coming

Coffee & Conversation with Dr. Claire Moore

Guest Post by Alyssa DiLeo (Neuro). Coffee & Conversation is a series of informal chats with women faculty on campus, hosted by Tufts GWiSE. 

Tufts GWiSE kicked off our monthly Coffee and Conversation series this week with Dr. Claire Moore from the Cellular, Molecular, and Developmental Biology department at Sackler. This series establishes a space to have a casual discussion with female faculty at Tufts to help build personal and professional networks and to share our experiences in science.

Claire grew up in Louisiana during the Civil Rights movement, which would end up being crucial to her future career goals. She understood the low expectations for women in the south: you graduate high school, maybe go to college, and start a family. But, she wanted more. Claire received a scholarship to attend MIT, which, at the time, had a 7:1 ratio of men to women students. She completed a combined BS and MS program graduating with degrees in chemistry and neuroscience. Claire was captivated by science and wanted to continue pursuing her career, but like many of us, took some time deciding what to do next. After a six-month stint in a wildlife biology program at Colorado State, Claire returned to Boston and worked in Phil Sharp’s lab. She demonstrated RNA splicing for the first time, work that would later earn Phil Sharp a Nobel Prize. If she had returned home, she knew she would have been flipping burgers instead of doing EM work in a prominent research lab. She stressed how important these opportunities and supportive mentors were to her career as a scientist since she too suffered from this confidence gap often seen in women. She didn’t believe she was good enough for a PhD, but that obviously turned out to be the well-known imposter syndrome talking, which she insists gets quieter with time. Claire obtained a Ph.D. in genetics in 1982 from the University of North Carolina before returning to Boston as a post-doctoral scholar in Phil Sharp’s lab. She joined the faculty at Tufts University in 1986 where her lab studies post-transcriptional processing of mRNA and its role in gene expression regulation.

Claire understood how important mentoring had been for her as an undergraduate and wanted to give back to the scientific community. Her upbringing exposed her to race and gender discrimination in the South and saw how roadblocks were built in front of people for reasons that were simply out of their control. She developed a summer training program which naturally progressed to the Post-baccalaureate Research Experiences Program (PREP) which places recent graduates interested in pursuing research careers in labs at Tufts. As if that wasn’t enough, Claire also established the training in Education and Critical Research Skills (TEACRS) program that prepares Tufts postdoctoral scholars for academic careers and supports them in pursuing teaching and mentoring activities.

Through these programs, it’s easy to see Claire’s dedication to mentoring at all career levels, especially to underrepresented minorities in science. This past year, in recognition of all she has done as a role model and mentor for women at Tufts, Claire was appointed to the Natale V. Zucker Professorship. This professorship provides her with the tools to further uplift women in science here at Tufts.

Claire told us to learn to be confident in asking for what we want, in saying no, and in asking for help. She encouraged us to find balance in our career roles and mostly pursue the parts that inspired us the most. Importantly, she also reminded us to foster relationships with each other and mentorships with women in higher positions. Claire said the first time she realized her gender could hinder her in science was when she realized her male mentors were more comfortable with male students who, in turn, received more mentorship. Well, we believe we just created our very own girls club.   

If you’re interested in getting involved with GWiSE, follow us on Twitter @TuftsGWiSE, like us on Facebook, or email us at tuftsbostongwise@tufts.edu. Here are some links relevant to our conversation for further reading: The Confidence Code, stopping the tenure clock, Million Women Mentors, Women STEM Networks.

Pathway to PhD> Netflix binge: Luana Melo (UMB) reflects on her winter break

Guest Post by Luana Melo, UMass Boston

Starting off P2P week 2 with Molly Hodul (Neuro)! Courtesy – Aimee Shen

When I thought about how I wanted to spend my three-week winter break, I envisioned twelve-hour Netflix binges and waking up at 11 am every day. What I didn’t expect was to be working in a lab, and attending workshops Monday through Friday, from nine to five pm. That is what my break was like, however, and I don’t regret a second of it (except the ones I spent stuck on the red line after snowstorms). I was privileged enough to have been accepted into the Tufts Winter Enrichment Program: The Pathway to PhD, an experience I will never forget. Those three weeks taught me more than I had could have imagined, and I walked out a better person and scientist.

Over the span of three weeks, I got to participate in seven different research projects, attend workshops, seminars, and interact with graduate students. The seminars were twice a week and were an opportunity for self-reflection and personal statement development. My lab-mates and I used to refer to it as group therapy jokingly. The workshops ranged from a variety of topics, but their general premise was to prepare us for graduate school and develop our professionalism. They were all incredibly helpful, and answered a lot of the questions we all had and made us all feel more prepared to apply not just to graduate school but research programs as well.

Picking worms with Lidia Park (CMDB). Courtesy – Aimee Shen

Despite how helpful the seminars and workshops were, I have to say the best part about the program was the actual research experiments. The research we did was exciting; some focused-on microbiology, some on immunology, and some on neuroscience. My favorite project was the one focused on microbiology. The research was based on the vieSAB operon in Vibrio cholerae, which aimed to determine motility and biofilm-production phenotypes of different VieA mutants in the presence of various nutrients. It was interesting to isolate and test different variables and see what parts of the operon pathway got disrupted. We as a group decided that there needed to be modifications to the experimental design to reproduce the experiment with fructose or sucrose instead of glucose.

“How do antibodies work?” with Reem Abbaker (UMB), Michael Hyde (CMDB) & Nafis Hasan (CMDB). Courtesy – Aimee Shen

That ability to reflect and adapt the experimental design, to think critically about future improvements, and what factors are to be excluded are just some of the valuable skills I learned in the program. I learned about the scientific process and saw examples of it being used, for example, to consider unaccounted factors that could be influencing the results, to determine the relative efficiency of a buffer used, or to think about how the pH might be too high/low, etc. If the scientific process was a book and I an editor, I’d say the point is to look for the plot holes.

Another aspect of the program I enjoyed was working with the graduate students. They were enthusiastic about working with us and teaching us. It was awesome getting to interact with them; they were eager to show us anything we were curious about and to answer any of our questions relevant to graduate school or not. One of my favorite interactions was when a graduate student was telling my lab-mates and I all the frustrating and discouraging things about being a graduate student. She followed it with the gloomiest monotone “but I’m living my dream.” On the elevator ride home, we all laughed about it.

Author with her cohort – Cassie Berluti (UMB), Kayla Gross (CMDB), Luana Melo (author), Reem Abbaker (UMB) & Brian Hall (UMB) (left to right). Courtesy – Aimee Shen

This program was a valuable experience that I think undergraduate students could benefit from immensely. I can’t think of a better way to spend winter break than amongst imaged neurons, and secondary antibodies.