Tag Archives: education

What Scientists Can Learn From Fiction Writers

Scientists don’t often think of themselves as writers. Our employment responsibilities do not include crafting characters or building worlds from words, nor investigating the latest political scandal, nor travelling the globe and composing reflections on our experiences. Yet, we do write: grants, reports, manuscripts. It is how we distribute our knowledge and the science we have done, because graphs and images and data have little impact if not shared. We write and revise as much as any journalist or novelist; still, writer isn’t an identity most scientists would primarily claim.

We are, though. Scientists are writers. Scientists are storytellers. Each graduate student, post-doc, faculty member has a story they are telling through their science. The scale and impact differs, but the fact remains: we must spin a tale convincing enough for our science to be funded, to be published, to matter. We are  writers, and we don’t even realize it.

I was trained to be a writer in the classical sense, specifically fiction writing. There were certain lessons that we learned over and over again, because they were fundamental to crafting even the most basic story. What fascinates me is that I have encountered these components informally in my graduate school training, just in the guise of doing good science.

We use basic story structure in writing articles: our beginnings ask a question, which we then try to answer in the middle, and our ends show how we have changed our little corner of the science world with our answer. There may even be a cliffhanger in there–alluding to a sequel coming soon to a journal near you!–if we’ve created even more questions with our answer. Grant writing uses a similar structure, with more emphasis on the cliffhanger. Leaving your reader on the edge of his seat, wondering what could come next, is something both scientists and fiction writers want (equally for the validation of having intrigued your audience and the satisfaction that such engagement often results in financial investment).

Show, don’t tell. Rather than telling a reader that a character is angry or sad, a writer should describe the character’s balled-up fists or tear-stained cheeks. For scientists, our equivalent of ‘telling’ is ‘data not shown’–and we all know how much we should avoid that. We do our showing in our figures. A scientist knows that the more data you can include, all the better. A scientist also knows that the more visually appealing your data is, the better it represents your conclusions. No one likes to read tables, right? Those data become so much more interesting as a pie chart, a graph, or a schematic. We show as much as we can, and tell as little as possible, because the best case scenario is when the data speaks for itself, instead of the scientist speaking for it.

Stories are much more interesting when they start in media res, or in the middle: no boring leadup, no extensive exposition. It is why publications often start with describing a hit or two they discovered from a screen, instead of the million little steps that led up to and happened during the screen itself. Good papers do that, and so does good fiction. The first Harry Potter book does not walk the reader through Harry’s childhood; it just starts right at the moment his life is about to change. Relevancy and immediacy are key components to telling any story, and scientists know and practice these principles to the best of their ability.

Crafting things out of thin air to make a story is a staple of fiction, but we know that as data fraud in the science world. The ‘characters’ in our scientific writing, the ‘plot’, the ‘setting’, the ‘rising action’, the ‘falling action’, all of those things have to be based on facts and evidence, on carefully planned and painstakingly executed experiments. They are based on reality. We know this; every scientist knows this. What we as scientists may not realize, however, is the extent to which fiction writing is also rooted in reality. Creating characters or worlds out of thin air is in actuality rarely done. The foundation of so many characters–ordinary or fantastical–come from experiences and observations within the writer’s own realm. It is a different way of collecting and representing evidence, a different way of asking or answering a question about the world. This reality-turned-fiction is one of the best ways a novel writer can build a sense of believability even in the most far-fetched fiction. It also builds trust between author and reader, one of the most important–and difficult–parts of fiction writing. Scientists have these components within their works as well, though constructed and strengthened in a different manner. Trust in science is built through executing proper and thorough controls, validating via different experimental methods, and considering (and hopefully, systematically eliminating) alternate theories or explanations. So regardless of the method in which they are built, that believability and that trust are critical components to any story, be it science or fiction.

Fiction writing, creative nonfiction writing, journalistic writing are all still very different beasts than scientific writing. Still, it would benefit scientists to focus less on the differences and more on where our often polarized fields actually do intersect. So much of our work is to provide convincing answers to difficult questions, and that type of evidence-based persuasion can be drastically more powerful if we use the same tools that traditional writers do. Scientists need to learn these tools as undergraduate and graduate students through formalized, structured, specified, and required coursework. That training will carry us, and our work, miles farther in graduate school and in our careers beyond. We need to be trained as writers, maybe as much as we are trained as scientists. Communicating our work in a persuasive and captivating manner is more important the ever, given the disturbing loss of faith in evidence-based arguments. We, as scientists, need to win that trust back, and to do so, we better be able to tell one hell of a story–to our funding institutions, to our public–about our science. For science to progress, we need our stories to be loud, to be spellbinding, to be believed and trusted by the public. We need to be writers, otherwise we might one day read a story about science that starts with once upon a time…












Notes from the North: Review of Online Course “Scientists Teaching Science”

Scientific graduate programs all over the country do a wonderful job training their students to become critical thinkers able to design experiments, write fellowship grants, write peer reviewed papers, and grasp complex scientific systems. Nearly all programs, however, struggle to provide career training. Traditionally, skills such as mentoring, teaching, and leadership have been learned by observing others. This has generated many excellent scientists, mentors, teachers, and leaders, but how many more could we have developed had students received directed training? And how much better would our current scientific leaders be had they not had to reinvent the wheel for themselves?

One of the dangers of requiring students to learn through osmosis is that we tend to recapitulate what we see, even if it is not the most effective method. Partly this is because many of us do find this an effective way of gaining skills and knowledge, but there is also a mentality of initiation: we had to struggle, the next generation should experience this too. There are many answers to this paucity of career development training, however, in the form of business clubs, student and postdoc association lead career workshops, and online extracurricular courses.

Some of us at Sackler interested in a teaching career have taken advantage of a short course entitled “Scientists Teaching Science” which teaches best practices in science education, based on the latest research on teaching and STEM ed sol logolearning by STEM Education Solutions (http://stem-k20.com/). This is a completely online course that runs about nine weeks with a different module every week. Depending on the week, the time commitment is about 3 hours per week for light weeks and as much as 8 hours per week on heavy weeks (depending on how assiduous a note taker you are when doing readings and how detailed you are in written assignments).

I found the intro to the course very illustrative and memorable. We were asked to read several articles on how science has traditionally been taught and how active learning has repeatedly been shown to improve learning outcomes, then Barbara Houtz started her own narrated lecture in the traditional “Sage on the Stage” style. My heart immediately sank as I envisioned the next nine weeks writing dense, jargon filled notes on topics that seemed esoteric and non-practical. This was not what I thought I was signing up for! Then she paused and asked the question, “what are you thinking?”

That’s when the real lecture began. The narrated lectures were fantastic! Available 24/7 and provided as both narration and transcript. Methods that make participants stop to think about what they are being told were used liberally to retain participant attention. This meant that we were being shown how to effectively employ all the skills we were being taught as they were being taught to us. The modules covered learning/teaching styles, generating effective assessments, Bloom’s Taxonomy of Learning, writing your teaching philosophy (a part of faculty application materials that I only learned about last year despite years of aspiration to teach), cultural awareness, active learning and inquiry based teaching, writing course objectives, teaching online, course development, and syllabus compilation. Each module was comprised of a narrated lecture, readings, and a written assignment or discussion board post requirement. Additional resources were also provided on the Virtual Learning Environment and Barbara Houtz frequently sent out class announcements about recent articles on STEM education and careers for PhDs.STEM

I embarked on this online only course with a great deal of trepidation. Would I have the self-discipline to keep up with the material? Would I feel comfortable reaching out to the instructor with questions and comments? The answer is that with the help of an instructor devoted to keeping her participants involved and getting the most out of her course I was able to gain practical teaching skills in a remarkably short time.

Educate & Communicate: A Science Activism Manifesto

Science is often thought of as a monolithic entity, but it is actually a complex composition of a discipline, an institution, and a community, all focused on finding truth and knowledge in data and the natural world. Science as a community consists of people of all ethnicities and from all socioeconomic classes; talent is found everywhere, and we as scientists do not and should not limit our number to those with a privileged pedigree. Science as an institution is a pillar of modern society, supporting and enabling growth and progress previously impossible to achieve. Science as a discipline is an investigative practice that demands rigor, critical analysis, and substantive evidence to support the conclusions that we draw from the data. Science as a discipline to formulate theory may be apolitical, but as an institution and a community that is an integral part of modern civic society, science cannot simply be an idle observer. Atrocities have been committed in the name of science when the idea of the pure monolith prevails and is exploited by political regimes to suppress minorities, such as the Tuskegee syphilis experiments and Nazi human trials. However, science has also been used to fight for the welfare of all people and to resist such regimes: Rachel Carson, Albert Einstein, Linus Pauling, Max von Laue all used their privilege as scientists to fight for justice and the greater good. While the scientific discipline provides a path for pure theory, we are human, each with our own biases that guide our investigation, influence our analysis, and may even blind us to the truth. Ultimately, the application of scientific theory to society bears the imprint of our ideas and our biases, and we as a community bear responsibility for the results. It is therefore imperative that we distinguish the apolitical discipline of science from the institution and community of science, which are a part of civic society and inherently political. We currently hold privileged positions in society that are at risk in the contemporary political climate. The defense of science is our moral and civic duty. Furthermore, in defending ourselves, we should also take a stand to give a voice to those who cannot do so for themselves.

It has been three weeks since President Trump has entered office. It has been three weeks of chaos and confusion. In these three weeks, President Trump’s actions have threatened to tear apart the fabric of American society, wrought and held together for so long by people of all ethnicities, sexual, religious and political orientations. However, whereas his actions have largely focused on promoting protectionist values, it also appears that he and his cabinet nominees are determined on ignoring scientific evidence and denying the real dangers of climate change, as well as showing utter disregard for environmental protection. Their plans to dismantle the Environmental Protection Agency, with the help of the Republican Party, and the threat to abolish the Endangered Species Act all point to their contempt towards protecting biodiversity, the very proof of evolution. Their intention to deregulate the pharmaceutical industry, under the illusion of lowering drug prices, will risk the lives of patients. Their attempts to champion creationism and intelligent design over evolution in public education will risk the credibility of scientific facts. Meanwhile, the House committee on science, space and technology appears more eager to accept the President’s words despite what multiple media outlets have to say in their defense, even as President Trump proclaims any media outlet as “fake news” if they fail to agree with him. In addition, Trump’s hobnobbing with the most prominent anti-vaxxer, Andrew Wakefield, should already raise concerns about how decades of public health work to minimize infectious diseases and maintain public support will be undermined because of his ideology, especially when the anti-vax movement is gaining momentum. Even further, his claims to “totally destroy” the Johnson Amendment, the law that upholds the separation of Church and State, also pose a major threat to the scientific endeavor.

The U.S.A, the country that still puts the highest amount of taxpayer money into scientific research compared to other Western nations, is currently being ruled by an administration that would rather shape policy based on pre-existing ideologies than hard evidence. Since this administration ignores scientific data regarding the dangers posed by climate change, restricts dissemination of scientific data to the populace who funded the research, subjects its doctors and scientists to a travel ban in the guise of “protectionism” when data clearly show that homegrown terrorists have caused far more deaths in the U.S. than immigrants from any of the seven countries on the ban list, it is our duty as scientists to stand up and take a stance. We can no longer afford to look away. We can no longer afford to remain in our comfortable positions as biomedical scientists whose careers are not currently threatened. We should use our privilege to stand up for those whose voices have been muted.

In these times when the foundations of the scientific community are threatened and evidence-based policies disregarded, the outpouring of support has solidified our unity. Already, scientists are taking action – a nation-wide and possibly global March for Science rally has been planned for April 22 (Earth Day). Prominent scientists across the U.S. have petitioned against the travel ban, and European scientists have offered laboratory space to scientists stranded due to the travel ban. Scientists from all walks of life are organizing to protect their communities; scientists are actively thinking about running for office and other positions to influence policy-making. These are all very encouraging, however, these actions are missing a key point – this is a battle of ideology, not policy or scientific literacy. As a recent study has shown, the public does not consider scientific questions that raise moral or ethical concerns as “science” questions. Another recent excellent article on how science journalism can combat this issue reports that science journalists should “listen, be curious and consider the non-science factors that shape people’s beliefs – because people’s beliefs shape policy, our society, and the world”. One may imagine that increasing scientific literacy should take care of such issues, however, that has not been the case. All too often, scientists  fail to properly communicate with the masses and are  unable to get the message across because they were too focused on explaining the basic science without taking into consideration the presentation of  facts.

This is not a temporary issue. Trump is not the only President who has or will challenge evidence-based policy and threaten the scientific community. However, it is crucial that we take action now because the dangers of climate change are imminent and we cannot afford to deny it anymore. Therefore, it is imperative that scientists come forward to educate and communicate with the public in a language and tone sufficient to start a dialogue. We start by communicating with each other, educating each other about our work. From there, we communicate and educate our family members and relatives, our friends, our communities and beyond. This has to be a grassroots movement – no top-down policy will fix the scientific literacy issue and lead American society toward a future where policies are based on hard evidence as  opposed to blind faith. This is how we can give back to the public, who provide the majority of funding for our work, and ensure that science does not belong to an elite population, but in the hands and minds of the people.

This is why we are calling on you, each and every scientist, ranging from technicians to postdocs, graduate students to faculty, to action. Educate and communicate with your science. Explain why it is necessary. Even if you talk to just one person a day, that can make a difference. That is where we start. If you want to do more, organize. Rally behind policymakers who heed scientific evidence and will champion such causes. Volunteer at high schools and colleges. Take part in science festivals. Celebrate science and its achievements sans the elitism. It is not about funding, or whose research is more important. It is about making science accessible to the masses, who have tirelessly supported and benefited from our work for decades and will continue to do so. It is about rescuing science from the clutches of political partisanship. It is about freedom to communicate our science, the protection of our community, and the advancement of our society.

For too long academics have been cooped up in their self-imposed exclusive isolation from the masses. For too long we have assumed that Science exists in a vacuum. We cannot afford this axiom anymore. We have to consider the social, political, and economic forces that affect the direction of scientific research. We have a moral and civic duty to fight for what is right and to prevent the use of science to advance fascist ideology. The time to take action is now. 

Here are some resources to help you take action in the short term –


The Sackler Insight Team