Project Overview

SIMSAM is an integrated Simulation, Measurement, and Stop Action Moviemaking toolkit.

Motivation
- Simulation and data analysis are tools of scientific discourse - ways to think about, engage critically with, and communicate understandings of science.
- Like classroom argumentation, simulation and data analysis should be seen as ways for students to posit, test, and refine their own scientific ideas.
- It’s important to support a continuum between conceptualization and simulation: students should program their own objects, and their own measures to test their model’s predictive power.

Design Studio Workshop
We held a preliminary workshop held to develop our technological, theoretical and analytic tools.

- "Design studio" using SAM Animation and StageCast Creator.
- Five sixth-grade girls, three workshop facilitators (the poster authors).
- Four sessions in Fall 2012, 1-2 weeks apart.
- Participants explored modeling activity about how smell spreads through a room.

Sequence of Activities
Day 1 Discussed smell diffusion, drew models on paper and created SAM animations.
Day 2 Refined models during discussion, revisited animations, and introduced StageCast Creation.
Day 3 Worked in small groups to better understand the details of StageCast as a programming tool.
Day 4 Challenged and revised StageCast sims. Participants evaluated sims based on measurable outcomes.

Data Collected
We collected video data and student artifacts during each workshop session. Video segments of particular interest are transcribed for deeper analysis.

Claims
Different types of scientific discourse emerged in the context of different representational and computational media. By positioning student-generated representations as the focus within each medium, the same ideas and debates percolated across these different types of discourse. These supports allowed sustained, focused theory-building and refinement over the course of the design workshop.

1. **Certain forms of scientific discourse emerged as engaged with different media.**
 - Increasing "medial" of explicit talk about causal mechanisms as students moved from discussion to animation, to simulation.
 - Shifts in particular modeling practices that co-occur with different media.
 - Cycle of elaboration, refinement, and encapsulation of content-related ideas over time.

2. **Student representations allowed ideas and debates to persist and re-emerge across media.**
 - Simulation objects such as "oogies" were used as editable, persistent notications of earlier ideas and debates.
 - Students’ gradual uptake of different computational forms were reflected in shifting use of representational objects such as arrows.

3. **Design principles to support simulation as discourse.**
 - Prompts should support sustained theory-building activity that can be embedded within and persist across multiple media.
 - Content exploration should be intertwined with, not separated from, learning to use the tool.
 - Delicate balance between when and what students feel authority over aspects of modeling task.

Data Analysis

- **Student representations allowed ideas and debates to persist and re-emerge across media.**
- **Prompts should support sustained theory-building activity that can be embedded within and persist across multiple media.**
- **Content exploration should be intertwined with, not separated from, learning to use the tool.**
- **Delicate balance between when and what students feel authority over aspects of modeling task.**

References
- Chang, H-Y, Quintana, C., & Krajcik, J. (2010). The impact of designing and evaluating molecular animations on how well middle school students understand the particulate nature of matter.
- Chang, H-Y, Quintana, C., & Krajcik, J. (2010). The impact of designing and evaluating molecular animations on how well middle school students understand the particulate nature of matter.
- Chang, H-Y, Quintana, C., & Krajcik, J. (2010). The impact of designing and evaluating molecular animations on how well middle school students understand the particulate nature of matter.