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The Secrets of Computer Power Revealed

We are surrounded by computers these days, and there seems to be no limit on what they
can do if properly equipped with input and output interfaces—transducers and effectors—but
although it is often said, as a sort of mantra, that a computer is a Universal Turing Machine, and
that a Universal Turing Machine can compute any computable function, this is not well
understood, even by some people working on computers. The underlying reasons for computer
power are philosophically interesting in themselves, and worth understanding at an elementary
level. This series of simple expositions and exercises is intended to provide that understanding.

I start by considering what is probably the simplest imaginable computer, a Register
Machine, and seeing just what its powers are and why. | then go on to show how a Turing
Machine, and a Von Neumann Machine (such as your laptop) are “just” Register Machines with
speedups and more memory. We can then also see how other “architectures” could further
multiply the speed and capacity of our basic machine, the Register Machine. The architecture of
the human brain is, of course, one of the most interesting and important architectures to consider.
In Kinds of Minds, we trace some of the key innovations in evolutionary history that lead from
the simplest proto-minds (of macromoleules and bacteria) through animal brains/minds to
brains/minds like ours. In this brief account, we will consider a parallel imaginary evolution
from the simplest computers through your laptop to something that is not yet built, but
describable in sketch at least: a computer that equals the powers of your mind. Many experts—
not just philosophers, but neuroscientists and psychologists and linguists and other cognitive
scientists—have argued that “the computer metaphor” for the human brain/mind is deeply
misleading, and, more dramatically, that brains can do things that computers can’t do. Usually, if
not always, these criticisms presuppose a very naive view of what a computer is or must be, and
end up proving only the obvious (and irrelevant) truth that brains can do lots of things that your
laptop can’t do (given its meager supply of transducers and effectors, its paltry memory, its
speed limit). If we are to evaluate these strong skeptical claims about the powers of computers in
general, we need to understand where computer power in general comes from and how it is, or
can be, exercised.

1. The Register Machine

This brilliant idea was introduced at the dawn of the computer age by the logician Hao



Wang (a student of G6del’s, by the way, and a philosophg¢r).' It is an elegant tool for thinking,
and Iwant you to have this tool in your own kit. It is nof anywhere near as well known as it
should be.

A Register Machine is an idealized, imaginary (byt perfectly possible) computer that
consists of nothing but some (finite number of) registers pnd a processing unit.

The registers are memory locations, each with a unique address (register 1, register 2, register 3, .
...} and each able to have, as contents, a single integer (0,1,2,3, . . . . .). For added vividness you
can think of each register as a large box, which can dontaln any number of beans, from Oto . ...
however large the box is . . . . We usually consider the boles to be capable of holding any integer
as contents, which would require infinitely large boxes, of course. Very large boxes will do for
OUr PUrposes.

The processing unit contains a program that tells it exactly what to do. There are only three
instructions it can follow:

End
or

Increment register n (add 1 to the contents of] register n) and go to step m
or

Decrement register n (subtract 1 from the contentg of register #) and go to step m

The Decrement instruction works just like the /nctement instruction, except for a single
complication: what should it do if the number in register g is 0? It cannot subtract 1 from this
(since registers cannot hold negative integers as contents)| so, stymied, it must Branch. That is, it
must go to some new place in the program to get its next instruction. This requires every
Decrement instruction to list the place in the program to go to next if the current register has
content 0. So the full definition is:

Decrement register n (subtract 1 from the contenty of register #} and go to step m
OR (if you can’t decrement register n) Branch to step p (Deb for short).

At first glance, one would not think such a simple|machine could do anything very
interesting; all it can do 1s put a bean in the box or take a pean out of the box (if it can find
one—and branch to another instruction if it can’t). In|fact,|however, it can compute anything your
laptop can compute.

Let’s start with simple addition. Suppose you wanted it to add the contents of one register
(let’s say register 1) to the contents of another register (repzister 2). Saq, if register 1 has contents

'Hao Wang, 1957 "A Variant to Turing's Theory qf Computing Machines", Journal of the
Association for Computing Machinery, pp63-92.
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[3] and register 2 has contents [4] we want the progra
[7] since 3+4 =7. Hereis a program that will do th
call RAP, for Register Assembly Programing:

program 1: ADD {1.2]

Instruction
Deb
Inc

End

20 {0 ste
2

1

Register
1

2

Step
1.

2.
3.

The first two instructions form a simple loop,
register 2, over and over, until register [ is empty,
thereupon branches to step 3, which tells it to halt. T

contents of a register is except in the case where the conte
boxes image, you can think of the processing unit as blind,
until it is empty, something it can detect by gropmg But i
general, what the contents of its registers are, ifitis given
the contents of register 1 to the contents of register 2 and {

always work? Go through a few cases to make sure.)
Exercige 1

a. How many steps will it take the Register machine ¢
(counting End as a step)?

b. How many steps will it take to add 5 + 27

¢. What conclusion do you draw from this?
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Now let’s write a program that simply move
register:

program 2: MOVE [4.5]

Here is the flow graph:

S)
Ry,
gel

Notice that the first loop in this program clea
contents at the beginning won’t contaminate what is
(which 1s just our addition loop, adding the contents
imtializing step is known as zeroing out the register,

You will use it constantly to prepare registers for use.

s the|contents of

Step Instruction — Register 20 o step branch t
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3. Inc 5 2

4. End
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A third simple program cepies the contents le one register {0 a

original contents unchanged. Consider the flow graph, an

:s I~ _on

program 3: COPY 1.3]

Step Instruction — Register go to step
1. Deb

2 Deb
3. Deb
4. Inc
5 Inc
6 Deb
7 Inc
8 End

e, “E - S S I L VR
(o, LUV W T SN W

This 1s certainly a roundabout way of copying, sing
of register 1 to register 3 while making a duplicate copy ir]
back into register 1. But it works. Always. No matter|whaf
at the beginning, when the program halts, whatever was in
of those contents will be in register 3.

With moving, copying, and zeroing out in ourl|kit,
program and improve it. Program 1 puts the right answer {

but in the process it destroys the original contents of registers 1 and 2.

fancier addition program, that saves these values for some
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2

3
6

o our additig

nother register, leaving the
Dgram;

¢ we do it by first moving the contents
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somewhere else. So let’s consider the task of adding
register 2, putting the answer in register 3 and leavin

Here is a flow graph that will accomplish that:
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We can analyze the loops, to see what each d
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out the answer register,

to use as a temporary holding tank or

buffer. Then we copy the contents of register 1 to both 3 and 4, and move those contents back '
from the buffer to 1, restoring it (and in the process, zeroing out register 4 for use again as a
buffer). Then we repeat this operation using register 2, haying the effect of adding the contents of

register 2 to the contents we’d already moved to regis

ter 3

. When the p

rogram halts, buffer 4 is

empty again, the answer is in register 3, and the two numbers we added are back in their original

places, registers 1 and 2.




Here is the RAP program, which puts all the information |n the flow graph in the form that the
processing unit can read:

program 4: Non-destructive ADD [1.2.3]

Step Instruction  Register go o step {branch to step?
1. Deb 3 1 2
2. Deb 4 2 3
3. Deb 1 4 6
4, Inc 3 5

5. Inc - 4 3

6. Deb 4 7 8
7. Inc 1 6

8. Deb 2 9 8.
9, Inc 3 10

10. Inc 4 11

11. Deb 4 12 | 13
12. Ine 2 11

13. End

Now tum to subtraction. Here is a first stab at|a flow graph for subtracting the contents of
register 2 from the contents of register 1, putting the answer in register 4. Can you sce what 1s
wrong with it? ‘

o @k

-_(_{' | |

This will only work when the contents of register 1 is|greater than the contents of register 2. But
what if this isn’t so? Register 1 will “zero out” halfway thrpugh one pass in the subtraction loop,
before it can finish the subtraction. What should happen then? We can’t Just ask the computer to




end, for this leaves the wrong answer (0) in register 4. Wé can use this zeroing out to start a new
process, which first backs up half a loop and undoes the provisional decrementing from register
2. At this point the contents of register 2 (not register 1) gives the right answer if we Interpret it
as a negative number, so the simplest thing to do is to mote those contents to register 4 (which is
already zeroed out) and put a sign somewhere indicating that the answer is a negative number,
The obvious thing to do is to reserve aregister for jusi thip task—let’s say register 3. Zero it out at
the beginning, along with register 4, and then have the prpgram put a [‘flag” in register 3 as the
sign of the answer, with [0] meaning [+] and [1] mea%ning (-]. Here is the flow graph, with
comments explaining what each step or loop does. (You dan put such comments in your RAP
programs, in between # marks. They are for you and dther human beings; RodRego will
ignore them.): : :

<t

(=




Exercise 2

that
matl

a. Write the RAP program for this flow graph. (Note
number the steps in several different ways. It doesn’s
“go to” commands point to the right steps.)

b. What happens when the program tries to subtract
c. What possible error is prevented by zeroing out re
3 instead of after step 57

3 fro

With addition and subiraction under our belts, mul
devised. Multiplying n times m is just adding » to itself m
to do just that, using one register as a counter, counting dd
each time the addition loop is completed.

Exercise 3
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b.Optional! Using Copy and Move, improve your multipl]
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divide by zero!”

Here is the flow graph for dividing the contents o [ register 1 by the contents of register 2,
putting the answer in register 3, the remainder in register|4, and highlighting register 5 for an

3

’ B , .. |
“ertor message” (1 means 1 was asked to divide by zero).

Mo

i c{u v]L\-*”/"\%’

Walk through the flow graph, and notice how zero in the dlivisor aborts the operation and raises a
flag. Notice, too, that register 4 is doing double duty,‘ serving as a copy of the divisor, for
restoring the divisor for each successive subtraction, put also serving as a potential remainder
register. If register 1 zeros out before register 4 can dlump its contents back into 2 for another
subtraction, those contents are the remainder, right wihere it belongs.
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2. Today arithmetic, tomormrow the world

As you can now see, Deb, Decrement-or-Branch,
Machine. It is the only instruction that allows the compu
use what 1t notices to guide its next step. And in fact, thi§
power of all stored program computers, a fact that was re
19" century when she wrote her historic discussion of Ba
prototype of all computers.

by

can |
ed eq
1M, 5¢
atior
We g

Assembling these programs out of their parts
you get the hang of it. In fact, once you have compos
.use them again and again. Suppose we numbered the
SUBTRACT was operation 1, MULTIPLY was oper
operation 5, MOVE could be operation 6, . . . . Then
instruction, by number.

Fxercise 4 (optional)

Draw a flow graph, and write a RAP program that 1
calculator, as follows:
a. use register 1 for the operation:

(VRS g

0= add i
1 = subtract :
2 = multiply :
3 =divide

b. put the signs and the values in registers 2.3, 4, ana| 5
(thus 20 6 0 7 instructs the Register Machine to multzply ).
putting the sign and value of the answer in registers 6 and
using register & for remainders (in division)
and register 9 for a divide-by-zero flag (I = I've been
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number) to stand for four very different things: a number
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factor, or COMPARE the contents of register 3 and
register 5 UNLESS it is exactly twice as large, in wh
forth.

regis
yich ¢

A particularly useful routine would SEARCH thrg
them had a particular content, putting the number of that
would 1t work? Put the TARGET number in register| 102,
zero out register 101, then, starting at register 1, subtract
(after incrementing register 101), looking for a zero answ
2, and so forth. IF any register has the target number] halt
register 101.) Thanks to the basic “sensory” power embo
zero when it tries to decrement a register—we can turn the
s0 1t can examine its own registers, moving contents|arou
on what it finds where. And since a number in a register g
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Alan Turing was the brilliant theoretician and
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|
using another simple imaginary computer (which Chll.lgS b
making its behavior depend (aha--conditional branching)
tape square under its reading head. All the Turing machin
writing 1 or vice versa) or leave the bit alone, and then m
to ifs next instruction. 1 think you will agree that wntmc
SUBTRACT and so forth, using just the binary svrnbols {
time, 15 a more daunting exercise than our Register machil

ack and forth along a paper tape,

on whether it read a0 or a 1 and the
e can do is
bve left or right one tape square and go
Turing machine programs to ADD and
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ne exsrcises, but the point Turing made

is exactly the same. A Universal Turing machine is a device with a Program A (hardwired, if you

like) that permits it to “read” its program B off its paper t3
whatever else is on the tape as data or input to pro gra.m B
execute any program that can be reduced to arithmetic ang
Turing’s Turing Machine. And among the programs {hese
program A that has the wonderful power to take the numh
Instead of building thousands of different computing|mac]
particular complicated task, we build a single, general pur
A installed) and then we can get it to do our bidding by fe
virtual machines. The Universal Turing Machine is a univ
less well known Universal Register Machine.
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So is your laptop. There is nothing your laptop can
Machine can’t do, and vice versa. But don’t hold your bre
were equal in speed. We’ve already seen that our Register
as laborious as division, which it does by subtraction, | for §
speed things up? Indeed there are. In fact, the h1story of ¢
history of ever faster ways of doing what the Register

For instance, John von Neuman created the archite
computer, and m order to speed it up, he widened the
at-a-time to many-bits-at-a-time (so0, many early computer
or even 12 bit words. Today 32-bit words are widely used.
that each word is COPIED from memory one at a time, int
Register) where it is READ and executed. A word typ|1call
(e.g. ADD, MULTIPLY, MOVE, COMPARE, JUMP£-Z
computer which register to go to for the contents to be ope
might tell the computer to perform operation 101011 |1(] of1]
1110101010101, putting the answer, always, in a special rg
difference between the Register Machine and a Von Neum
Machine can operate on any register (Inc and Deb only, of
Machine does all the arithmetic work in the Accurnulator,
STORES) contents to the registers that make up the memo
copying by being able to perform many different fundlamen

‘How many primitive operations in real computers t
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thousands, or in a return to the good old days, you can hj
Computer), which gets by with a few dozen primitives, &
with which they are executed. (If you could do Jnc and
do a hard-wired ADD operation, it would pay to compos
above, and for all additions with less than a million [steps

How many registers in real computers these
course, so that really large numbers have to be sprea
byte is 8 bits. If you have 64 megabytes of RAM on
registers, or the equivalent. We saw that numbers in
positive integers. Real numbers are stored (to whate
system of “floating point” representations, where one ny
other for its exponent. Floating point operations are fjust 4
multiplications and divisions) using these floating point 1
computer you can buy today can perform over 4 megaflo
Operations Per Second.
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If that isn’t fast enough for you, it helps, of coursg
in parallel. There is nothing that such a parallel maching
cannot do, slower! In fact, most of the parallel machines|
last twenty years have been virtual machines simulated o
Special purpose parallel hardware has been developed, af
exploring the costs and benefits of widening the von Neuy
traffic through it, in all sorts of ways, with co-processors,
speed-ups.

No parallel computer yet built is remotely as|[wide
have somewhere in the neighborhood of 10 bilhon neuro:
several million channels wide. But neurons operate much
neuron can switch state and send a pulse (plausibly, its va
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near the speed of light (which is why making compulters 8
faster; it takes roughly a billionth of a second for light to
processes communicate faster than that, they have to|be ¢

14

ave a RISC (
Deb a millior
e ADD out ¢
? Millions (b

t over large 1

sters can star
VEr approximatio

ut makes up

» you'd com

computer, y

mber stands
arithmetical
nurnbers as v
ps. over 4 m)

5, to yoke tog
can do that
that have be
1 standard V]
1d computer
mann bottler
cache mem

, as multi-ch
ns, and the oj
L, much slow
rsion of Inc
second. Con
maller is a
travel a foot,
loser togethe

Reduced Instruction Set

for it in the blinding speed

1 times faster than you could
f Inc and Deb, as we did
e out ahead.)

ut they’re each finite, of

wumbers of registers). A

ou have 16 million 32-bit

1d for things other than
n is called for) using a

for the abscissa and the

Operations (particularly

alues, and the fastest
llion FLoating point

xether many such machines

a purely serial machine
en actively studied in the
on Neumann machines.
designers are busily

eck, and speeding up the
bries, and various other

annel, as your brain. You
ptic nerve is, all by itself,

er than computer circuits. A
or Deb) in a few

nputers move bits around at
ey move in making them

so if you want to have two
T than that.)






