Practice Midterm 2021 Solutions

1. True/False: if a 3-candidate election has two Smith candidates out of three, then there must be a tie in the pairwise comparison graph.

True Suppose the three candidate are $A_{i} B, C$ and the Smith set $S=\{A, B\}$. We know then that there must be an arrow from A to C and an arrow from B to C, since the Smith set is a dominating set. So we have

There are 3 possibilities for
 Case 1:
 but then $\{A\}$ is a dominating set and therefore $\{A, B\}$ can ot be the Smith Set since the smith set is defined to be the smallest dominating set.

Case 2:
$A \Vdash^{\circ}{\underset{\sim}{\circ}}_{B}$ but the $\{B\}$ is a dominating set and therefore $\{A, B\}$ can ot be the smith set since the Smith set is defined to be the smallest dominating set.

Case 3:

This is the only possibility left, and indeed this gives the smith set $S=\{A, B\}$.
2. Find an example (system and preference schedule) for which there is a spoiler who is a Smith candidate. In your example, are they a winning spoiler? Losing spoiler? Weak spoiler?

One approach is to try out a preference schedule in which all of the candidates are in the smile set. Automatically, then, any spoiler will be a Smith candidate. So we need a system and a preference schedule in which (1) all the candidates are smith candidates and (2) some candidate is a spoiler. Let's try out a simple example satisfying (1): a preference schedule ginning noe to a condone cycle. Lot's see what happens when we use plurality.

$$
\begin{aligned}
& \times 1 \times 1 \times 1 \\
& A \quad B \quad C \\
& \begin{array}{ll}
B & C \\
C & A \\
& B
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { What papers when } \\
& C \text { is disqualified? } \\
& \times 2 \quad \times 1 \\
& \Rightarrow W_{\text {lar }}^{l}=\{A\} \\
& \begin{array}{ll}
A & B \\
B & A
\end{array}
\end{aligned}
$$

Candidate C is a spoiler because

$$
\underbrace{W_{\text {plur }}^{\prime}}_{\{A\}} \neq \underbrace{W-\{c\}}_{\{A, B\}}
$$

In particular:

- C is a winning spoiler because $C \in$ Wplar.
- C is not a losing spoiler because $C \in W_{p}$ ur.
- C is not a weak spoiler because $C \in S$, where S is the Smith set, which is the set of strong (i.e., not weak) candidates,

3. Suppose there are $n=10$ candidates and $N=100$ voters in a particular perference schedule. How many consolidations do you have to consider to run each of these methods?: plurality, runoff, elimination, Coombs, Borda, Smith, Smithified plurality, pairwise comparison, sequential, and dictatorship. Example: Runoff requires you to identify the top two vote-getters and compare them head-to-head, so you do one consolidation (down to those two candidates).

In case it is helpful: a pairwise comparison graph with ten vertices has 45 edges.
(1) Plurality: \cup consolidations

To compute the winner in plorality, we simply read off the candidates) with the most first-place woes from the given preference schedule.
(2) Runoff: 1 consolidation (see (t) above)
(3) Elimination: Each time I eliminate a Candidate, I have to consolidate the preference schedule. I car stop when I have 2 candidates remaining, and simply read off who has more votes at that stage. To arrive at 2 candidates remaining in the preference schedule, we successively eliminate the 8 other candidate, and each time we eliminate a candidate we consolidate the preference schedule, so we need 8 consolidations.
(4) Combs: 8 consolidations.

The reasoning is the same as above, Combs and elimination differ any in how a candidate is elominated in each round; 8 eliminations (and thus consolidations) are still required to amie at 2 candidates remaining, at whish stage we just read off which candidate has more votes.
(5) Borda: O consolidations

We compute Borda sores for each candidate directly from the given schedule.
(6) Pairuse Companisun: 45 consolidations

To construct the PUC graph, we need to conduct a head-to-head for each pair of candidates. There are 45 such pairs (corresponding to the 45 edges in the $P \omega C$ graph). To find tho winner of a head -
-to-head, we consolidate the preference schedule to the tho candidates of interest in the head -to-head. Thus 45 consolidations are needed to construct the PWC graph. Once we have the PWC graph, we simply look at which candidates) have the greatest number of outgoing arrows to determine the winner (s).
(7) Smith: 45 consolidations

We need to construct the PWC graph and once we have that we can use it to find the Smith set, so no additional consolidations are required. So the answer is the same as for pailuise comparison above.
(8) Smithified plurality: 46 consolidations

Again, we have to find the smith set by Constructing the pUS graph, which by the above requires 45 consolidations?
Then, once we find the Smith candidates, we have to consolidate the preference schedule
to those candidates and then read off the winner based on plurality from the consolidated preference schedule. So in total we need $46=45+1$ consolidations.
(9) Sequential: 9 consolidations

Sequatial companion requires 9 head-to-head Competitions. For, say the sequitial ordering is:

Then:

$$
A, B, C, D, E, F, G, H, I, J
$$

A Vs, $B \rightarrow$ winners W_{1}
where w_{i} is
then W_{1} vs. $C \rightarrow$ whiner W_{2}
then W_{2} vs, $D \rightarrow$ winner W_{3}
then W_{3} us. $E \rightarrow$ winner W_{4}
then W_{4} us $F \rightarrow$ unseen W_{5}
then W_{S} US .G \rightarrow under W_{6}
then W_{6} vs. $H \rightarrow$ winners W_{7}
then W_{7} vs, $I \rightarrow$ vince W_{8}
then W_{δ} vs $J \rightarrow$ winner W_{9}
just the winner in the $2^{\text {Th }}$ round.
Since determining the coiner of each of the 9 head-to-heals requires a Consolidation, the answer is ?
(10) Dictatorship: O consolidations

Just look at the ballot of the dictator (namely their first-place choice) to determine the winner.
4. Suppose again there are $n=10$ candidates and $N=100$ voters in an election. Can you tell from the pairwise comparison graph alone whether an election has a Condorcet candidate? Pareto candidate? majority candidate? unanimous preference of X over Y ?

Condonet: Yes
By definition, a condorcet candidate has an outgoing arrow to each other candidate in PWC graph

Pareto: Yes. If a candidate X has an anow to every other candidate with a margin of 100 , then X is preferred by every voter to every other candidate (and conversely, if X is Pareto, this is what the PWC graph will have).
Majun'ty: No, You can have a majonty candidate who beats everyone by small margins, so the arrows and margins alone are not enough. If you're curious to see a concrete example for why the pWC graph does not provide enough information, see next page.

Unanimous: Yes. If X beats Y with a margin of 100 , then all votes prefer X to Y (and conversely, if all waters prefer X to Y, this is what the PU(graph will have).

Schedule 1

$$
\begin{gathered}
x 33 \\
x 33 \\
A
\end{gathered} C \frac{133}{} 1
$$

(\$)

Schedule 2
majesty $\times 33 \times 33 \times 33 \times 1$ candidate $B B \subset A$
$A A B A$
$C C B C$

Schod 1 and Schod 2 have same paimise comparison graphs but B is a only a majonty candidate in sched 2 .
\Rightarrow cannot tell whether
there is a majonty candidate from PWC graph

* Anours and margins
from $\{A, B, C\}$ to $\{D, E, \ldots, I, J\}$ and among $[D, E, \ldots, I, S\}$ are the same in both P WC graphs.

5. Build a preference schedule each candidate has under 40% of the first-place votes, but there is some consolidation which produces a majority candidate.

Make a divided wite in a 3 way race. Then any consolidation to two candidertes will produce someone with a considerable majonty.

| $\times 35$ | $\times 35$ | $\times 30$ | $\times 65$ |
| :---: | :---: | :---: | :---: |$\times 35$

6. True/False: the runoff method is unanimity-fair.

True. If there is a unanimous preference (say $x>Y$) then X appears above Y in every single column in the preference sihedule. Now the runoff method takes the top two first-place votegetters . Candidate Y has no fint-place votes at all, because everyone prefers x to y, so y cant $^{\prime}$ be one of the candidates in the muoff, so $y \notin W_{1}$
7. Is it possible for a move to be favorable to one candidate and neutral to another candidate? If so, give an example.

Sure. Recall a neutral move to a cardidate keeps them in place (no candidates may "hop" over) while a favorable move raises a candidate while keeping the relative order of the other candidates uncharged, So take

$$
\begin{aligned}
& A \\
& B \\
& C
\end{aligned} \rightarrow \begin{aligned}
& B \\
& C
\end{aligned}
$$

Move is facroble to B, neutral to C.
8. Give an example of a preference schedule with five candidates so that all of them are involved in a Condorcet cycle.
Recall to create a condorcet cycle with 3 candidates, we troll

$$
\begin{array}{ccc}
\times 1 & \times 2 & \times 3 \\
A & B & C \\
B & C & A \\
C & A & B
\end{array}
$$

Notice to generate the ballots from left - to night, "shift" the precious ballot up and let the ballot "wrap anoud".

Now we generalize the preference schedule fum before to 5 candidates by using the same "shifting" strategy.

$$
\begin{array}{lllll}
\times 7 & \times 1 & \times 1 & \times 1 & \times 1 \\
A & B & C & D & E \\
B & C & D & E & A \\
C & D & E & A & B \\
D & E & A & B & C \\
E & A & B & C & D
\end{array}
$$

9. Make up an example of a voting system that is unanimity-fair but not Pareto efficient, or explain why this is impossible.

Impossible! Suppose the syskm is chanimity-fair, and suppose there is a Pareto candidate. Then that candidate is raked first on every ballot, but that means theyrre Unanimously preferred to every other candidate. UF says that if there's a unanimous candidate, then the dispreferred candidate shouldn't win. For this to be true, everybody but the pareto candidate would be eliminated from contention. But the Pareto candidate must win, 10 the system is automatically Pareto efficient.

