ACTIVITY HEADER

 

 

 

Name of Activity Wire Maze Challenge
Author STOMP
Keywords Electrical Engineering, maze, loop, wire, current, switch, open circuit, closed circuit
Subject Non-LEGO
Grade Level 4, 5, 6
Time 1 Hour Total
Brief Description Students will be constructing a game made out of a simple circuit with a movable loop of wire that can be guided over a curved “maze” wire. The object of the game will be to guide the loop along the maze without touching the loop to the maze wire. If the student does touch the loop to the wire, the circuit will be complete, turning on the light bulb, and signaling the touch.
Lesson Objectives: - To teach students about electrical circuits.
- To teach students about electrical currents.
Materials Needed: Per Group:
- One 9V battery w/connection plate and attached wires.
- 24 inches of un-insulated wire (stripped insulated wire between 20 – 24 AWG should work).
- One 1-Watt light bulb w/ lamp base.
- One 24 inch length of insulated wire w/stripped ends.
- One 8 inch length insulated wire w/stripped ends.
- Electrical tape.
- Cardboard base (optional).
- Four alligator clips (optional).
- Popsicle stick or pencil.
Preparation and Set Up: - Show the first five slides of Powerpoint attached.
- Break the class into groups of two.
- Distribute worksheets and building materials.
Necessary Background Vocabulary:
Electrical current
Switches
Open circuit
Closed circuit
Procedure
  1. Connect 1 wire of the battery connection plate to the light bulb using an 8 inch strip of wire.
  2. Attach a 24 inch length of insulated wire to the other side of the light bulb. The end of the wire not connected to the lamp should be stripped of insulation for the last three inches of its length.
  3. Curl the stripped end of the long wire into a small loop approximately ½” across.
  4. Using electrical tape, create a handle for the wire ring by fastening the remaining wire to the end of a pencil or popsicle stick.
  5. Using a 24 inch strip of wire without insulation, create a looping and bending “maze” that the ring will have to follow.
  6. Put one end of your maze through the wire loop on the end of the popsicle stick, and then tape both ends to the cardobard base so that the maze sticks up into the air.
  7. Use a gator clip to attach the other terminal of the battery connection plate to the end of the maze. Leave one end of the un-insulated maze taped to the table with nothing else connected to it. You should now see that when your loop touches the wire path the light bulb turns on!. See if you can guide the loop along the maze without touching the wire and turing on the light.
  8. Discuss with the class why the light bulb only goes on when the loop touches the wire.
Extensions or Modifications: If you finish with the wire maze with extra time remaining, try to figure out a way to add an additional loop to the maze. There are two different ways to wire this circuit – you can either have the light bulb turn on when either one of the loops touches the wire, or you can have it turn on only when both loops are touching the wire. Draw your new circuit below using the electrical engineering symbols on the previous page.

The diagrams below are two possible approaches to this extension.

Modifications:
Hint:
Be careful not to connect the battery terminals together if there is no resistor in between
them! This creates what is known as a short circuit, and if left connected for too long will
quickly drain the battery.

Reference 1 http://sites.tufts.edu/stompactivitydatabase/files/formidable/maze1.png
Reference 2 http://sites.tufts.edu/stompactivitydatabase/files/formidable/maze2.png
Reference 3 http://sites.tufts.edu/stompactivitydatabase/files/formidable/maze3.doc
Reference 4 http://sites.tufts.edu/stompactivitydatabase/files/formidable/maze4.pdf
Tagged with →  
Share →

Leave a Reply

Tufts Student Teacher Outreach Mentorship Program • 200 Boston Ave. • Suite G810 • Medford, MA • 617-627-5888

Switch to our mobile site