Tug-O-War

ACTIVITY HEADER

 

 

 

Name of Activity Tug-O-War
Author Kara Miranda
Keywords gear, gear ratios, build, machine, tug-o-war, competition, prototype, Engineering Design Process, torque
Subject NXTs
Grade Level 4, 5, 6, 7, 8, 9+
Time 3 Hours Total
Brief Description Students will use their knowledge about gears and gear ratios to build a machine that will play tug-o-war against another classmate’s.
Lesson Objectives: To apply building techniques and knowledge about gears to an activity challenge.
Materials Needed:
RCX or NXT LEGO kits

Assortment of extra LEGO pieces, especially gears and beams
Engineer’s Planning Sheet
String
Scissors
Tape

Preparation and Set Up:
Collect necessary materials
Photocopy worksheets
Arrange students into groups of 2
Decide how you will distribute extra pieces
Write design requirements on the board
Necessary Background Review gears, gear ratios, and torque.

Vocabulary:
Prototype
Engineering Design Process

Gears
Gear ratio
Torque

Procedure
    • Tell students that in this challenge they will be playing tug-o-war by building a machine that can provide enough torque to pull on another machine doing the same thing. String will be tied between the two, and a machine will have to pull the other over a line of tape in order to win.
    • Make sure to review how gears work, gear ratios, and using gears for torque vs. speed. Also explain the engineering design process.
    • Tell students the requirements for their tug-o-war contenders. Examples of requirements are:
    •       Must use gears
    •       Must have a sensor
    • Allow the class to brainstorm different ideas for their machines. Have them plan out and draw their design on the engineering planning sheet.
    • Distribute materials and have students start building. You may have to assist students with tying string to their machine.
    • After the students finish building, pair up machines and tie them to either end of a string, making sure the middle of the string is right above the tape on the ground, and that both machines are equidistant from the tape.
    • Have the students start their machines. Whoever’s machine gets pulled over the line first, loses.
  • After the students finish, review the activity with the class. Have them share their ideas, ask groups to explain what the hardest part of the challenge was, etc.
Extensions: Have students add more gears
Make a classwide tug-o-war competition. Whose is the “strongest”?
Allow those who lose to redesign and compete against each other again
Reference 1 http://sites.tufts.edu/stompactivitydatabase/files/formidable/a.pdf

Catapult

ACTIVITY HEADER

 

 

 

Name of Activity Catapult
Author Kara Miranda
Keywords design, challenge, build catapult, launch, LEGO, not classroom tested, k-3, 4-6, 7-9, prototype, Engineering Design Process, lever, fulcrum, force, load
Subject Simple Machines, LEGO Building
Grade Level K, 1, 2, 3, 4, 5, 6, 7, 8, 9+
Time 2 Hours Total
Brief Description An design challenge in which students will design and build a catapult and see which design will launch an object the furthest. This activity can use either Lego or non-Lego pieces. *This activity is not classroom tested.*
Lesson Objectives: To apply building techniques and knowledge about levers to an activity challenge.
Materials Needed: Simple Machine or RCX kits
Example photos of catapults
Assortment of extra LEGO pieces, especially beams
Engineer’s Planning Sheet
Plastic spoons
Rubber bands
Tongue depressors
Glue
Tape
Ruler (yardstick or tape measure)
Preparation and Set Up: Collect necessary materials

Photocopy worksheets
Arrange students into groups of 2

Decide how you will distribute extra pieces and other materials

Write design requirements on the board

Find a section of the floor at least 15 feet long and put tape down on one side. Students will place their finished catapults on this line and launch the object from there, and the teacher can measure how far it has gone.

Necessary Background Review three different classes of levers.

Vocabulary:
Prototype
Engineering Design Process

Catapult
Lever (first, second, and third class)
Fulcrum
Force
Load

Procedure
    • Tell students that in this challenge they will be making a catapult. Explain to them what a catapult is, making sure to go into levers and its three different classes. A catapult can mean any machine that hurls a projectile. Students can use either Legos or non-Lego materials to create their catapult.
    • Show students different pictures and/or videos of catapults, explaining what they do and how they work. Explain the engineering design process.
    • Tell them the requirements for their catapults. Examples of requirements are:
    •       Must be six inches tall
    •       Must launch a ball at least 6 feet
    • Allow the class to brainstorm different ideas for their catapult design. Have them plan out and draw their design on the engineering planning sheet.
  • Distribute materials and have students start building.
    • After students finish building their catapults, have them place their catapult on the line and launch an object (preferably something that will not roll, perhaps a Lego piece). Measure how far the catapult launched the object.
  • After the students finish, review the activity with the class. Have them share their ideas, ask groups to explain what the hardest part of the challenge was, etc.
Extensions: Have students redesign their catapult to make it launch objects even further.
Have a class-wide competition to see whose catapult launches the furthest.
Reference 1 http://sites.tufts.edu/stompactivitydatabase/files/formidable/111_image_1.jpg
Reference 2 http://sites.tufts.edu/stompactivitydatabase/files/formidable/111_image_2.jpg
Reference 3 http://sites.tufts.edu/stompactivitydatabase/files/formidable/Building_Design_Sheet3.pdf

Spin Art

ACTIVITY HEADER

 

 

 

Name of Activity Spin Art
Author Kara Miranda
Keywords open-ended, design, challenge, design, build, spin, create, art, markers, crayons, paint, art supplies, not classroom tested, NXT, toys, prototype, Engineering Design Process, Gears, gear ratios, 4-6, 7-9, 2 Hours Total
Subject NXTs
Grade Level 4, 5, 6, 7, 8, 9+
Time 2 Hours Total
Brief Description An open-ended design challenge in which students will design and build an object that will spin in some manner to create art with markers, crayons, paint, or other art supplies. *This activity is not classroom tested.*
Lesson Objectives: To apply building techniques and knowledge about gears to an activity challenge.
Materials Needed: RCX or NXT LEGO kits
Example photos of toys that create spin art
Assortment of extra LEGO pieces, especially gears and beams
Engineer’s Planning Sheet
Markers, crayons, paint, or other art supplies
Tape (to tape markers, crayons etc. to LEGO pieces)
Large sheets of paper to draw on
Preparation and Set Up: Collect necessary materials
Tape down large sheets of paper to floor if necessary
Photocopy worksheets
Arrange students into groups of 3
Decide how you will distribute extra pieces and drawing utensils
Write design requirements on the board
Necessary Background Review gears and gear ratios

Vocabulary:
Prototype
Engineering Design Process
Gears
Gear ratio

Procedure
  • Tell students that in this challenge they will be making spin art. Explain to them what spin art is and the different ways they can go about making it. Spin art is created by any medium spinning in some manner, whether it is the marker drawing in circles, paint being spun, or paper being rotated, etc. Students may attach these things to a car that they program, or a stationary object, or whatever they choose; this activity is very open ended for students design-wise.
  • Show students different pictures and/or videos of spin art toys, explaining what they do and how they work. Also, it may be a good idea to review how gears work. Explain the engineering design process, emphasizing the prototype and the redesign.
  • Tell them the requirements for their spin art makers. Examples of requirements are:
  •       Must have at least three gears
  •       Can be manual or electric
  •       Must use two different mediums (i.e. markers and paint, paint and crayons, etc)
  • Allow the class to brainstorm different ideas for their spin art design. Have them plan out and draw their design on the engineering planning sheet.
  • Distribute materials and have students start building. You may have to assist students with taping markers to their project.
  • After the students finish, review the activity with the class. Have them share their ideas, ask groups to explain what the hardest part of the challenge was, etc.
Extensions: Have students add more gears
Have students add more drawing utensils (more markers, etc)
Have students put their drawing utensils on different axes (i.e. one paintbrush horizontal and one marker vertical)
Have students add a sensor that causes something on their spin art maker to perform some act (i.e. when the light sensor senses white, the blue marker starts spinning)
Reference 1 http://sites.tufts.edu/stompactivitydatabase/files/formidable/a.jpg
Reference 2 http://sites.tufts.edu/stompactivitydatabase/files/formidable/b.jpg
Reference 3 http://sites.tufts.edu/stompactivitydatabase/files/formidable/c1.pdf

Hand Mixer

ACTIVITY HEADER

 

 

 

Name of Activity Hand Mixer
Author Kara Miranda
Keywords hand mixer, gears, gear ratios, not classroom tested, prototype, Engineering Design Process, 4-6, 7-9, 2 Hours Total
Subject NXTs
Grade Level 4, 5, 6, 7, 8, 9+
Time 2 Hours Total
Brief Description Students will design and build a hand mixer, learning how to use different gears in a variety of ways. *NOTE: not classroom tested.
Lesson Objectives: To apply building techniques and knowledge about gears to an activity challenge.
Materials Needed: RCX or NXT LEGO kits
Photos of different hand mixer designs
Assortment of extra LEGO pieces, especially gears and beams
Building Design Sheet
Preparation and Set Up: Collect necessary materials
Photocopy worksheets
Arrange students into groups of 3
Decide how you will distribute extra pieces
Write design requirements on the board
Necessary Background Review Gears and Gear Ratios

Vocabulary:
Prototype
Engineering Design Process
Gears
Gear Ratios

Procedure
  • Tell students that in this challenge they will be building a hand mixer.
  • Show students different pictures and/or videos of hand mixers, explaining what they do and how they work. Also, it may be a good idea to review how gears work. Explain the engineering design process, emphasizing prototype and redesign.
  • Tell them the requirements for their hand mixers. For example:
  •      Must have at least three gears
  •      Can be a manual or electric hand mixer
  • Allow the class to brainstorm different ideas for their mixer design. Have them plan out and draw their design on the Building Design Sheet.
  • Distribute materials and have students start building.
  • After the students finish, review the activity with the class. Have them share their ideas, ask groups to explain what the hardest part of the challenge was, etc.
Extensions: Have students add more gears.
Have students make the bottom of their hand mixer spin faster or slower by adjusting the gear ratio.
Reference 1 http://sites.tufts.edu/stompactivitydatabase/files/formidable/109_image_1.jpg
Reference 2 http://sites.tufts.edu/stompactivitydatabase/files/formidable/109_image_2.jpg
Reference 3 http://sites.tufts.edu/stompactivitydatabase/files/formidable/Building-Design-Sheet.pdf

GOOP

ACTIVITY HEADER

 

 

 

Name of Activity GOOP
Author Esha John (Created by Mike Motola Barnes, Andrea Dwyer)
Keywords matter, states of matter, experiment, viscosity, molecular structure, newtonian fluids, solid, liquid, gas, non-newtonian fluid, 1 Hour Total
Subject Non-LEGO
Grade Level K, 1, 2, 3, 4, 5, 6, 7, 8, 9+
Time 1 Hour Total
Brief Description Exploring the different states of matter and experimenting with objects that are in
between states of matter.
Lesson Objectives: Explain the differences between the different states of matter. Depending on the grade level the activity can be used to explain concepts of viscosity, molecular structure and newtonian and non newtonian fluids.
Materials Needed: Each group will need

-Plastic cup w/1.5 cups cornstarch

-Plastic cup w/1 cup of water (not yet filled)

-Styrofoam plate and plastic spoon

-Several paper towels

- 2x Recycling bin (or otherwise) to hold water, in lieu of a sink

Preparation and Set Up: Divide students into groups.

Divide up materials to give to each group.

Necessary Background The teacher should be familiar with all the vocabulary terms as well as know the
basic differences between the states of matter

-Solid: fixed volume and shape (low energy)

-Liquid: fixed volume, variable shape (high energy)

-Gas: variable volume and shape (very high energy)

Knowledge of Molecular structure in different states maybe necessary for older
children.

Vocabulary:
Viscosity – how much a fluid resists flowing (high = thick, low = thin)

Newtonian Fluid – viscosity stays the same (flow is directly proportional to pressure)

Non-Newtonian Fluid – viscosity changes with different amounts of force/pressure

Procedure  Talk about states of matter:

-solid:  fixed volume and shape (low energy)

-liquid: fixed volume, variable shape (high energy)

-gas: variable volume and shape (very high energy)

Briefly discuss molecular structure (in terms of energy).

Other terms:

Viscosity – how much a fluid resists flowing (high = thick, low = thin)

Newtonian Fluid – viscosity stays the same (flow is directly proportional to pressure)

Non-Newtonian Fluid – viscosity changes with different amounts of force/pressure

2. Discuss some examples of things that aren’t clearly solid/liquid/gas. Jello or pudding (solid+liquid); shaving-cream/foam (liquid+gas); play-dough (solid+liquid). These are mixtures of more than one matter state. A key process involved here is dissolving: the substance (such as salt) that dissolves breaks up, and may become invisible, but is still present!!

3. Talk about suspensions. Goop is a suspension of cornstarch in water. The cornstarch molecules are sticky, so they don’t slide over each other as easily as water molecules. Pass out worksheets and materials

4. Add about 2 parts of water to 3 parts of corn starch and mix well with a spoon until all the corn starch is dissolved. Alternatively you can pour water into the cornstarch while constantly mixing with a spoon. Stop as soon as all the corn starch is dissolved.

Tests

Poke with fingers: Poke it as hard as you can. How fast can you poke it without making it solid?

Roll into a ball: Pick up and roll between fingers. How long can you hold it like that? How big of a ball can you make?

Mix w/ fingers/spoon: How does it feel when you go fast? Slow? Hold the cup in place and pull the spoon out. Try to do it really fast. What happened?

6.  After the completion of the activity don’t let them wash it down the drain (get them to wipe their hands off before they go to the bathroom)

Reference 1 http://sites.tufts.edu/stompactivitydatabase/files/formidable/goop.doc

Boat Building

ACTIVITY HEADER

 

 

 

Name of Activity Boat Building
Author Rachel Yu and Laura Nixon
Keywords boats, materials, float, water, weight, sinking, density, surface area, weight
Subject Non-LEGO
Grade Level K, 1, 2, 3, 4, 5, 6, 7, 8, 9+
Time 1 Hour Total
Brief Description The students build boats out of different materials and then float them in water and
place pennies on the boats until they sink.
Lesson Objectives: Determine what material and what shape of the boat will make the boat that holds the most pennies.
Materials Needed: Tin foil, paper, clay (NOT play dough), Legos, popsicle sticks, tape, pennies, water and basin.
Preparation and Set Up: For the first graders, we gave each group a different material and had them build a boat out
of it. Then, after their first trial, they could choose what material they thought would work
best and make another boat.
Necessary Background Vocabulary:
Density
Surface Area
Weight
Procedure x

Simple Machines Mini Golf Course

ACTIVITY HEADER

 

 

 

Name of Activity Simple Machines Mini Golf Course
Author Daniel Meer (Elissa Milto)
Keywords mini golf, create, obstacle, 1 moving part, practical design, imagination, requirements, Simple Machines, 2 Hours Total
Subject Simple Machines, Non-LEGO
Grade Level K, 1, 2, 3, 4, 5, 6, 7, 8, 9+
Time 2 Hours Total
Brief Description Have students create a mini golf course, giving each pair the task of creating a single obstacle
and hole) for the course. Must have 1 moving part.
Lesson Objectives: - Experience in practical design.
- Implementing imagination to fulfill requirements while making an interesting requirement.
Materials Needed: - Simple Machine Kits.
- Marbles (lots of marbles).
Necessary Background Go to Candystand.com and choose the “minigolf” game for ideas of obstacle courses and such.
It helps to show this to the students if they are old enough to turn them into practical realities
as opposed to trying to recreate life savers floating down a river.
Procedure -present project -Give groups paper to plan -Let them build -put all together, test
Extensions: - Must have 2 moving parts.
- All sections must connect together.

Relay Race

ACTIVITY HEADER

 

 

 

Name of Activity Relay Race
Author STOMP
Keywords vehicles, steep ramp, relay, team, course, cars, gears, weight, weight distribution, friction, power, accuracy, wheel, axle, speed
Subject NXTs
Grade Level 4, 5, 6, 7, 8, 9+
Time 2 Hours Total
Brief Description Students will build two types of vehicles, one that is good for going fast on a flat surface and one that is good for climbing a steep ramp. Students will work together to create a relay team of 2 cars that must complete a course with a flat area and a steep ramp.
Lesson Objectives: To learn about gearing and how it can help with climbing ramps.
To learn complex programming that includes Bluetooth for communication between NXTs.
Materials Needed: Poster board, cardboard, wood or foam core for a ramp sloped about approx. 30 degrees from the horizontal.
NXTs or RCXs
Gears
Assorted building materials.
Computer running ROBOLAB or MINDSTORMS
Preparation and Set Up: Setup the relay course.
Set up a flat track that is five feet long with a start and finish and set up the ramp.
Collect necessary materials.
Arrange students into groups of 4.
Distribute the necessary materials.
Necessary Background One of the important things about robots is their ability to communicate to each other. Robots are often limited in their capabilities because it is too difficult to construct multi-tasking robots. For this reason, many different specialized robots are constructed, and then these robots are programmed to communicate to each other. For example, a certain Mars rover may specialize in searching for rock, while another may specialize in drilling rock. These two rovers can work together by sending signals to each other, in the same way we communicate, yet simpler. The following activity incorporates specialized robots that can communicate to each other to complete different sections of a single task: a relay race with different terrain.

CONCEPTS:
Building

Mechanical advantage of gears
- Small gear on motor, larger gear on wheel and axle for more torque to drive up the ramp
- Large gear on motor, small gear on wheel and axle for more speed to drive across the floor

Weight distribution of vehicle
- More weight on the front of the ramp vehicle
- Less weight for the entire floor vehicle

Friction
- Wide wheels for more contact surface area on the ramp vehicle
- Narrow wheels for less contact surface area on the floor vehicle
- Spacing between wheels and sides of vehicle so that the wheels rotate without rubbing

Power
- Large diameter wheels in the front of the ramp vehicle
- Ramp vehicle should be short in length

Accuracy
- Long floor vehicles with four wheels to ensure that the vehicle travels as straight as possible towards the stationary ramp vehicle

Procedure
  1. Introduce the activity and tell students that two people in their group will build and program a car to travel as fast as possible on a flat surface, and the other two people will be building a programming a car to drive up a ramp.
  2. Allow students to build their cars. Remind students that gears might help them build a car that can climb a ramp.
  3. Have students program their vehicles.
    1. The first vehicle must travel 5 feet to the base of a ramp and then stop. The students should use time to stop their robot, or use a light sensor if the course is marked with tape.
    2. When the first vehicle stops, it must send a message to the second vehicle (a number). This will trigger the second vehicle to start climbing the ramp.
    3. The second vehicle should start climbing the ramp when it receives the message from the first vehicle.
    4. Communication between RCXs/NXTs may be tricky.
      1. Use the ‘send mail’ and ‘wait for mail’ icons on the floor and ramp vehicle, respectively.
      2. Each group should send a different number so as to avoid confusion between RCXs and NXTs.
      3. Zero the receiving mailbox at the beginning of the program.
      4. Press run on both robots before starting the relay.
  4. Allow students to test their cars and rebuild/reprogram accordingly.
  5. At the end of class gather the students together. Have each team run their cars and time how long the relay takes from start to finish.
  6. Talk about what designs and programs worked the best and how you could improve upon each teams work.
Reference 1 http://sites.tufts.edu/stompactivitydatabase/files/formidable/Team-up-for-a-Relay.doc

Rat Race

ACTIVITY HEADER

 

 

 

Name of Activity Rat Race
Author STOMP
Keywords NXT, 1 Hour Total, vehicle, car, obstacle, obstacle course, contrasting colors, sound, sound sensor, constraints
Subject NXTs
Grade Level 4, 5, 6, 7, 8, 9+
Time 1 Hour Total
Brief Description Students will program their NXT vehicles through an obstacle course. The instructor
should be creative in making an obstacle course. The obstacle course can include a
contrasting colored floor, narrow passages that force students to design a compact car,
sounds that require students to use sound sensor, and walls that cars need to avoid.
Lesson Objectives: To learn about programming in NXT.
Materials Needed: NXT kits.
Computers running LEGO MINDSTORMS.
Obstacle course, be creative in inventing a fun obstacle course for students to program and design their car to get through.
Preparation and Set Up: Set up an obstacle course, it can be very simple to complex depending of the level and experience of the students.
Necessary Background Vocabulary:
Constraints.
Procedure
  1. Introduce the activity and show the students the pre-built obstacle course so that they know what their car has to do.
  2. Have students build their cars using touch and light sensors. Remind students that their car must somehow break through the rope barrier at the end of the course.
  3. When students have finished building, have them program their cars to travel through the course.
    1. The cars must start at the start line.
    2. When the cars hit the black line, their cars should turn right.
    3. When the cars hit the wall, the cars should turn left.
    4. At the finish line, the cars must break through the tape.
  4. When students have finished programming allow them to test their cars, reprogram/rebuild if necessary and retest their cars.
Reference 1 http://sites.tufts.edu/stompactivitydatabase/files/formidable/ratrace.doc

Designing a Parachute

ACTIVITY HEADER

 

 

 

Name of Activity Designing a Parachute
Author STOMP
Keywords parachute, string, weight, target, test, materials, air resistance
Subject Non-LEGO
Grade Level K, 1, 2, 3, 4, 5, 6, 7, 8, 9+
Time 1 Hour Total
Brief Description Students will select one type of paper for their parachute (i.e. tissue paper, napkin, paper towel, etc.) based on what they think will work best. The students will make a parachute with the paper and string and attach a weight. The students will then test their parachute.
Lesson Objectives: To learn about air flow and materials.
Materials Needed: Tissue paper
Napkins
Construction paper
Newspaper
Paper towels
String
Tape
1/4 lb Weights (a few batteries tied together would also work)
Preparation and Set Up: - Arrange students into groups.
- Distribute materials.
Necessary Background Vocabulary:
Air resistance
Procedure
  1. Explain the concept of air resistance to the class.
    1. Air resistance is the force that acts on anything moving through the air. It is not very heavy so humans don’t notice it much. Without air resistance things would fall faster than they do. The more surface area an object has the more air resistance affects it. This is why parachuters use wide light materials to slow them down as they fall.
  2. Have students cut a circle with a 6 inch radius of a paper of their choice.
  3. Have students cut 8 12 inch pieces of string and tape them at equal distances around the edge of the canopy.
  4. Tape the other end of the string to the weight.
  5. Drop the parachutes from a decided height and see if it works.
  6. Repeat steps 2 – 5 with all the different papers.
  7. Discuss the activity as a class. Ask the students:
    1. What material worked best for the parachutes? Why?
    2. What didn’t work as well? why?
    3. What changes would improve your design?
    4. What about a larger or smaller canopy?
    5. What would happen if you added more weight?
Extensions: Take the paper material that worked best and test different sized parachutes.
Make parachutes out of different materials.
Have a competition to see what parachute can land most gently.
Reference 1 http://sites.tufts.edu/stompactivitydatabase/files/formidable/aarongolf1.doc
Reference 2 http://sites.tufts.edu/stompactivitydatabase/files/formidable/Justin-2-STOMP1.doc
Reference 3 http://sites.tufts.edu/stompactivitydatabase/files/formidable/Margules-Obstacle-2-STOMP1.doc
Reference 4 http://sites.tufts.edu/stompactivitydatabase/files/formidable/Melissa1.doc
Reference 5 http://sites.tufts.edu/stompactivitydatabase/files/formidable/Mini-Golf-DiCarlo-2-STOMP1.doc

Switch to our mobile site