Communication Towers

ACTIVITY HEADER

Name of Activity Communication Towers
Author Ali Boreiko + Jen Scinto
Keywords communication, non-NXT, building, teamwork, social skills
Subject Non-LEGO
Grade Level 5, 6, 7, 8, 9+
Time <1 Hour Total
Brief Description In this activity, students will better understand the importance of communication for engineers. By completing an engineering challenge silently in groups , they will gain an appreciation for verbal communication.
Lesson Objectives: The objective of this activity is to have students reflect on how they communicate to their classmates and to the teachers. 
Materials Needed: -Found materials (paper, bottles, straws, clothespins, etc)

-An arm’s length of tape

-A separate room/space where half of the students can work (e.g. a hallway or empty classroom nearby).

Procedure Warm up the class by discussing: What is communication? How do humans communicate? Animals? Robots? Who do engineering need to communicate with when they’re working on a project? Who do you communicate with when you’re working on a project? (5-10 mins)

Then, divide the class up into teams of 6-10 people, let them choose their team name. The teams are competing to build the tallest tower. But, the team must build the top and bottom half separately. So, divide the teams up again into two groups, the top and the bottom (each with 3-6 people).

Tell them that the two groups working on the bottom cannot talk, but are allowed to write and draw. The team working on the top is not allowed to write or draw, but is allowed to talk. Let the kids work for ~10 minutes on their part of the tower. They should NOT be able to see the other half of the tower.

Then, each of the two groups (top and bottom) sends a representative to discuss their ideas with the other half of their team to plan how the tower will fit together. They cannot bring any pieces from the tower, just their ideas. Each representative keeps his or her handicap. After they meet for 5 minutes, the representatives return to their groups and continue to build. 

After ~10 more minutes of building, the groups unite and get 5 minutes to connect their tower, all the while with their handicaps. Finally, once each team has a tower, measure them! 

Debrief by asking: What was hard about the activity? Why is communication so important for engineers? (5-10 mins)

Frankenstein’s Robot

ACTIVITY HEADER

Name of Activity Frankenstein’s Robot
Author Charlie and Laura +Devyn and Alli’s Minigroup
Keywords Frankenscience, Introduction to NXT, sensors, instructions
Subject NXTs
Grade Level 4, 5, 6, 7, 8
Time 4+ Hours Total
Brief Description Providing students “Frank” the NXT brick, and walking them through the process of making Frank functional. This activity is an intro to NXT, so instructions are there to guide students as they become comfortable with new parts. Parts should be entirely interchangeable between robots.
Lesson Objectives: Personification of sensors
Confidence in using individual sensors and motors
Ability to combine a number of simple parts to create a more complex system
Materials Needed: NXT kits
Procedure Frank the robot is broken down into several steps of building and programming. The goal is for the kids to build a fully functional robot with advanced behavior without the children feeling overwhelmed by the complexity of the project.

Frank is introduced to the children as just an NXT brick. we comment on how Frank wants to be more mobile and introduce the deigns for the legs of frank the robot

Building Instructions [Frank the robot[moters+frame]]

distribute the PDF of the instructions to the kids, and the instructions should be intuitive enough for the kids to follow along. an NXT mindstorms program should also be developed that the kids can follow along as it’s programmed ( highly recommended to code and debug before giving to the kids)

once the kids have built frank up to the point of the instructions finish at, then the kids should bring out the laptops and start programming the motors. these small steps will show the kids that programming and building are not actually two separate tasks, but opposite sides of the same coin. this also allows for multiple iterations of the engineering design process.

once the kids have finished with the motors and basic frame then the other PDF’s should be distributed.

 

 

Freeze Dance

ACTIVITY HEADER

 

 

 

Name of Activity Freeze Dance
Author Jay Clark
Keywords program, NXT, robot, dance, conditional, loop, conditional loop, sound sensor
Subject NXTs
Grade Level 4, 5, 6, 7, 8, 9+
Time 1 Hour Total
Brief Description Students program their NXT robots to dance! But wait! Using conditional loop structures, they must program their robot to stop dancing when the music stops, and start again when the music is turned back on.
Lesson Objectives: Learning about the conditional loop
Building for non-car NXT movement
Determining and implementing sensor thresholds
Materials Needed: NXT kit including a sound sensor
A source and means of amplifying music
Computers with NXT Mindstorms software
Preparation and Set Up: Clear a space in the classroom to serve as the dance floor, and mark it off with black tape (for the extensions). Set up your music system and find a volume that will register a readable sound level in the NXT.
Necessary Background A loop is a helpful programming structure that allows you to repeat a set of commands. But sometimes, you don’t want to loop forever. A conditional loop will repeat the enclosed actions until some other criterion is met. A loop can be set to run for a certain amount of cycles of the loop, for a certain amount of time, until a logic condition is met, or until a sensor threshold is broken. This activity uses the last criterion in conjunction with the sound sensor to stop the robot from dancing.

Freeze dance is a game the children play in which they must dance when the music is on, but freeze when the music is turned off. If they don’t stop, or cannot hold the position they were in when the music stopped, they are eliminated.

Vocabulary:
Threshold – The sensor value that when breached, will trigger a wait for block or a conditional loop. (Some students have had a better time understanding it as a “benchmark”)

Procedure Introduction 10 minutes Review loops with the students and why they are useful in programs.

  • Loops allow us to repeat a set of commands that would otherwise be tedious to program over and over.

Sometimes loops should go on forever. Ask the students for examples they’ve done where loops go on forever. (Simple tasks like line following, wall following). In more sophisticated programs, they should not. Ask if they can think of a situation in which you don’t want a program to go on forever. A conditional loop is a great way to end a loop exactly when you want it to end and move on to another task. Our brains use conditional loops all the time!

  •  When crossing the street, we look both ways. If its not safe, we do it again. We keep doing it until its safe, and then we cross the street.

Remind the kids or introduce them to freeze dance, and introduce the Activity. Activity 40 minutes Students should construct robots for about 15 minutes and program for at least 25 minutes. After 40 minutes is done. Put all the robots on the dance floor and start and stop the music. Clean up 5 minutes Wrap up 5 minutes

  •  What was easiest? What was hardest?
  •  What would you have done differently?
  •  What were some good ideas you saw that other groups came up with?
Extensions: Don’t bore us with those same old dance moves! Have the students’ robot switch up the dance moves after each pause.Programmatically, this involves an additional stop and a wait for sound block plus an additional looped dance sequence.

Allow students who finish quickly to explore the dance floor! have their robots move and groove while moving about the dance floor. Using their light sensor, they should detect that they’re about to leave the floor, and they should dance in a different direction. Programmatically, this would involve placing the dancing section of code in a switch or another conditional loop.

Don’t bump into other dancers! Using an ultrasonic distance sensor, detect fellow dancers and steer clear! Programmatically, this would involve placing the dancing section of code in a switch or another loop condition.

Modifications: Much of the programming could also be done with switches. Push for conditional loops if you want that to be the focus of the lesson.
Reference 1 http://sites.tufts.edu/stompactivitydatabase/files/formidable/b3.png
Reference 2 http://sites.tufts.edu/stompactivitydatabase/files/formidable/c.jpg

Catapult

ACTIVITY HEADER

 

 

 

Name of Activity Catapult
Author Kara Miranda
Keywords design, challenge, build catapult, launch, LEGO, not classroom tested, k-3, 4-6, 7-9, prototype, Engineering Design Process, lever, fulcrum, force, load
Subject Simple Machines, LEGO Building
Grade Level K, 1, 2, 3, 4, 5, 6, 7, 8, 9+
Time 2 Hours Total
Brief Description An design challenge in which students will design and build a catapult and see which design will launch an object the furthest. This activity can use either Lego or non-Lego pieces. *This activity is not classroom tested.*
Lesson Objectives: To apply building techniques and knowledge about levers to an activity challenge.
Materials Needed: Simple Machine or RCX kits
Example photos of catapults
Assortment of extra LEGO pieces, especially beams
Engineer’s Planning Sheet
Plastic spoons
Rubber bands
Tongue depressors
Glue
Tape
Ruler (yardstick or tape measure)
Preparation and Set Up: Collect necessary materials

Photocopy worksheets
Arrange students into groups of 2

Decide how you will distribute extra pieces and other materials

Write design requirements on the board

Find a section of the floor at least 15 feet long and put tape down on one side. Students will place their finished catapults on this line and launch the object from there, and the teacher can measure how far it has gone.

Necessary Background Review three different classes of levers.

Vocabulary:
Prototype
Engineering Design Process

Catapult
Lever (first, second, and third class)
Fulcrum
Force
Load

Procedure
    • Tell students that in this challenge they will be making a catapult. Explain to them what a catapult is, making sure to go into levers and its three different classes. A catapult can mean any machine that hurls a projectile. Students can use either Legos or non-Lego materials to create their catapult.
    • Show students different pictures and/or videos of catapults, explaining what they do and how they work. Explain the engineering design process.
    • Tell them the requirements for their catapults. Examples of requirements are:
    •       Must be six inches tall
    •       Must launch a ball at least 6 feet
    • Allow the class to brainstorm different ideas for their catapult design. Have them plan out and draw their design on the engineering planning sheet.
  • Distribute materials and have students start building.
    • After students finish building their catapults, have them place their catapult on the line and launch an object (preferably something that will not roll, perhaps a Lego piece). Measure how far the catapult launched the object.
  • After the students finish, review the activity with the class. Have them share their ideas, ask groups to explain what the hardest part of the challenge was, etc.
Extensions: Have students redesign their catapult to make it launch objects even further.
Have a class-wide competition to see whose catapult launches the furthest.
Reference 1 http://sites.tufts.edu/stompactivitydatabase/files/formidable/111_image_1.jpg
Reference 2 http://sites.tufts.edu/stompactivitydatabase/files/formidable/111_image_2.jpg
Reference 3 http://sites.tufts.edu/stompactivitydatabase/files/formidable/Building_Design_Sheet3.pdf

Spin Art

ACTIVITY HEADER

 

 

 

Name of Activity Spin Art
Author Kara Miranda
Keywords open-ended, design, challenge, design, build, spin, create, art, markers, crayons, paint, art supplies, not classroom tested, NXT, toys, prototype, Engineering Design Process, Gears, gear ratios, 4-6, 7-9, 2 Hours Total
Subject NXTs
Grade Level 4, 5, 6, 7, 8, 9+
Time 2 Hours Total
Brief Description An open-ended design challenge in which students will design and build an object that will spin in some manner to create art with markers, crayons, paint, or other art supplies. *This activity is not classroom tested.*
Lesson Objectives: To apply building techniques and knowledge about gears to an activity challenge.
Materials Needed: RCX or NXT LEGO kits
Example photos of toys that create spin art
Assortment of extra LEGO pieces, especially gears and beams
Engineer’s Planning Sheet
Markers, crayons, paint, or other art supplies
Tape (to tape markers, crayons etc. to LEGO pieces)
Large sheets of paper to draw on
Preparation and Set Up: Collect necessary materials
Tape down large sheets of paper to floor if necessary
Photocopy worksheets
Arrange students into groups of 3
Decide how you will distribute extra pieces and drawing utensils
Write design requirements on the board
Necessary Background Review gears and gear ratios

Vocabulary:
Prototype
Engineering Design Process
Gears
Gear ratio

Procedure
  • Tell students that in this challenge they will be making spin art. Explain to them what spin art is and the different ways they can go about making it. Spin art is created by any medium spinning in some manner, whether it is the marker drawing in circles, paint being spun, or paper being rotated, etc. Students may attach these things to a car that they program, or a stationary object, or whatever they choose; this activity is very open ended for students design-wise.
  • Show students different pictures and/or videos of spin art toys, explaining what they do and how they work. Also, it may be a good idea to review how gears work. Explain the engineering design process, emphasizing the prototype and the redesign.
  • Tell them the requirements for their spin art makers. Examples of requirements are:
  •       Must have at least three gears
  •       Can be manual or electric
  •       Must use two different mediums (i.e. markers and paint, paint and crayons, etc)
  • Allow the class to brainstorm different ideas for their spin art design. Have them plan out and draw their design on the engineering planning sheet.
  • Distribute materials and have students start building. You may have to assist students with taping markers to their project.
  • After the students finish, review the activity with the class. Have them share their ideas, ask groups to explain what the hardest part of the challenge was, etc.
Extensions: Have students add more gears
Have students add more drawing utensils (more markers, etc)
Have students put their drawing utensils on different axes (i.e. one paintbrush horizontal and one marker vertical)
Have students add a sensor that causes something on their spin art maker to perform some act (i.e. when the light sensor senses white, the blue marker starts spinning)
Reference 1 http://sites.tufts.edu/stompactivitydatabase/files/formidable/a.jpg
Reference 2 http://sites.tufts.edu/stompactivitydatabase/files/formidable/b.jpg
Reference 3 http://sites.tufts.edu/stompactivitydatabase/files/formidable/c1.pdf

Hand Mixer

ACTIVITY HEADER

 

 

 

Name of Activity Hand Mixer
Author Kara Miranda
Keywords hand mixer, gears, gear ratios, not classroom tested, prototype, Engineering Design Process, 4-6, 7-9, 2 Hours Total
Subject NXTs
Grade Level 4, 5, 6, 7, 8, 9+
Time 2 Hours Total
Brief Description Students will design and build a hand mixer, learning how to use different gears in a variety of ways. *NOTE: not classroom tested.
Lesson Objectives: To apply building techniques and knowledge about gears to an activity challenge.
Materials Needed: RCX or NXT LEGO kits
Photos of different hand mixer designs
Assortment of extra LEGO pieces, especially gears and beams
Building Design Sheet
Preparation and Set Up: Collect necessary materials
Photocopy worksheets
Arrange students into groups of 3
Decide how you will distribute extra pieces
Write design requirements on the board
Necessary Background Review Gears and Gear Ratios

Vocabulary:
Prototype
Engineering Design Process
Gears
Gear Ratios

Procedure
  • Tell students that in this challenge they will be building a hand mixer.
  • Show students different pictures and/or videos of hand mixers, explaining what they do and how they work. Also, it may be a good idea to review how gears work. Explain the engineering design process, emphasizing prototype and redesign.
  • Tell them the requirements for their hand mixers. For example:
  •      Must have at least three gears
  •      Can be a manual or electric hand mixer
  • Allow the class to brainstorm different ideas for their mixer design. Have them plan out and draw their design on the Building Design Sheet.
  • Distribute materials and have students start building.
  • After the students finish, review the activity with the class. Have them share their ideas, ask groups to explain what the hardest part of the challenge was, etc.
Extensions: Have students add more gears.
Have students make the bottom of their hand mixer spin faster or slower by adjusting the gear ratio.
Reference 1 http://sites.tufts.edu/stompactivitydatabase/files/formidable/109_image_1.jpg
Reference 2 http://sites.tufts.edu/stompactivitydatabase/files/formidable/109_image_2.jpg
Reference 3 http://sites.tufts.edu/stompactivitydatabase/files/formidable/Building-Design-Sheet.pdf

Find the Hidden Letter

ACTIVITY HEADER

 

 

 

Name of Activity Find the Hidden Letter
Author STOMP
Keywords 1 Hour Total, NXT, datalogging, hidden letter, alphabet, light sensor, data, 4-6, 7-9
Subject NXTs
Grade Level 4, 5, 6, 7, 8, 9+
Time 1 Hour Total
Brief Description Students will use the NXT/RCX datalogging feature to identify a hidden
letter of the alphabet using light sensor data.
Lesson Objectives: To program an NXT/RCX vehicle to collect data.
To analyze data and come up with a solution.
Materials Needed: NXT/RCX kits.
MINDSTORMS 2.0 with datalogging
capabilities orROBOLAB investigator.
Large print out of a letter of the alphabet.
Should cover a 8 1/2 by 11 sized paper.
Preparation and Set Up: Set up the hidden letter on the floor or on a table, but make sure that it cannot be seen.
Have pre-built NXT/RCX vehicles or allow students to construct their own.
Set up computer with MINDSTORMS 2.0 or ROBOLAB Investigator.
Necessary Background Datalogging is used to collect data from the sensors on the NXT vehicle.
This data an then be uploaded on to a computer an analyzed.
The light sensor will be used in this activity to collect information
about the color changes of the hidden letter.
Procedure
  1. Attach a light sensor to your NXT/RCX car so that it is pointed at the floor. Wire this to port 1.
  2. Open the datalogging feature in MINDSTORMS 2.0, or open Investigator 2 in ROBOLAB.
  3. Program your vehicle to collect light data as it drives (see picture attached). You may need to adjust the power level depending on how fast your car drives over the hidden letter.
  4. Have the car drive across the letter at least 5 times in different places.
    1. This can be done by having your car drive across the letter one way three times, each time moving the car down a few inches, then doing the same thing but in a different orientation.
  5. Upload your data by clicking on the upload button of MINDSTORMS datalogging or in ROBOLAB investigator.
  6. Examine the data for peaks and valleys indicating light or dark areas. From these graphs have students try to decipher what letter the car drove over.
  7. Allow student to continue testing and then to guess what the hidden letter is.
  8. You may want to have a few hidden letters so that students can try this activity several times.
Extensions: Limit the number of times you allow a car to drive over a letter.

Add a second light sensor to collect more data.

Reference 1 http://sites.tufts.edu/stompactivitydatabase/files/formidable/example_letters.doc

Switch to our mobile site