Communication Towers

ACTIVITY HEADER

Name of Activity Communication Towers
Author Ali Boreiko + Jen Scinto
Keywords communication, non-NXT, building, teamwork, social skills
Subject Non-LEGO
Grade Level 5, 6, 7, 8, 9+
Time <1 Hour Total
Brief Description In this activity, students will better understand the importance of communication for engineers. By completing an engineering challenge silently in groups , they will gain an appreciation for verbal communication.
Lesson Objectives: The objective of this activity is to have students reflect on how they communicate to their classmates and to the teachers. 
Materials Needed: -Found materials (paper, bottles, straws, clothespins, etc)

-An arm’s length of tape

-A separate room/space where half of the students can work (e.g. a hallway or empty classroom nearby).

Procedure Warm up the class by discussing: What is communication? How do humans communicate? Animals? Robots? Who do engineering need to communicate with when they’re working on a project? Who do you communicate with when you’re working on a project? (5-10 mins)

Then, divide the class up into teams of 6-10 people, let them choose their team name. The teams are competing to build the tallest tower. But, the team must build the top and bottom half separately. So, divide the teams up again into two groups, the top and the bottom (each with 3-6 people).

Tell them that the two groups working on the bottom cannot talk, but are allowed to write and draw. The team working on the top is not allowed to write or draw, but is allowed to talk. Let the kids work for ~10 minutes on their part of the tower. They should NOT be able to see the other half of the tower.

Then, each of the two groups (top and bottom) sends a representative to discuss their ideas with the other half of their team to plan how the tower will fit together. They cannot bring any pieces from the tower, just their ideas. Each representative keeps his or her handicap. After they meet for 5 minutes, the representatives return to their groups and continue to build. 

After ~10 more minutes of building, the groups unite and get 5 minutes to connect their tower, all the while with their handicaps. Finally, once each team has a tower, measure them! 

Debrief by asking: What was hard about the activity? Why is communication so important for engineers? (5-10 mins)

Things That Go Bump

ACTIVITY HEADER

 

 

 

Name of Activity Things That Go Bump
Author STOMP
Keywords design, construct, NXT, car, bump, wall, damage, touch sensors
Subject NXTs
Grade Level 4, 5, 6, 7, 8, 9+
Time 1 Hour Total
Brief Description In this activity, students will design and construct an NXT car that will stop when it
bumps into a wall to prevent damage to the car.
Lesson Objectives: - To learn to program with touch sensors.
- To create a safety device for an NXT car.
Materials Needed: - NXT Car.
- Assortment of LEGO pieces.
- Computer running NXT software.
Preparation and Set Up:
Set up computers running NXT software.

Arrange students in groups of two.
Distribute necessary material to students.

Necessary Background Vocabulary:
Prototype
Procedure
  1. Have students draw out the design for the bumper that they will attach to the front of their car
  2. Have students build an NXT car.
  3. Have students attach a bumper to their car attached to the touch sensor so that the car can respond when it drives into a wall.
  4. Wire the motors to the outputs and the sensors to the inputs of the NXT.
  5. Program the NXT vehicle:
    1. If using NXT MINDSTORMS software, program the car to stop when it hits a wall.
    2. Once students have program their car to stop when the touch sensor is pressed, have students program their car to back up and turn after the car hits a wall, before driving forward again. This program requires a loop.
Reference 1 http://sites.tufts.edu/stompactivitydatabase/files/formidable/69_image_3.jpg
Reference 2 http://sites.tufts.edu/stompactivitydatabase/files/formidable/69_image_3.png
Reference 3 http://sites.tufts.edu/stompactivitydatabase/files/formidable/Bumper_car.doc

Tow Truck

ACTIVITY HEADER

 

 

 

Name of Activity Tow Truck
Author STOMP
Keywords steep, ramp, tow, towing, weight, gears, gear up, gear down, building, design, friction, gravity, center of gravity
Subject NXTs
Grade Level 4, 5, 6, 7, 8, 9+
Time 1 Hour Total
Brief Description Build a car that can climb a steep ramp while towing a weight (10 batteries) behind it.
Using gears to gear down is necessary for this challenge. This activity is more challenging
than a regular ramp climb and may require some complex building and design.
Lesson Objectives: - To learn to build and use gears.
- To learn about gravity, center of gravity, and friction.
Materials Needed: NXT kits
ramp
batteries for weight
string
computers running NXT Software
Preparation and Set Up: Build a ramp.

Set up computers running NXT software.

Arrange student in groups of two.
Distribute necessary materials.

Necessary Background It is more difficult for cars to climb steep slopes for different reasons. In this lesson you
can discuss with the class these different forces that affect the ability of the car to
climb the slope:

Friction – friction is the force acting between the surfaces of the car (tires) and
the ramp surface. This is the force that keeps the car from slipping.
Gravity – gravity pulls down directly towards the center of the earth. On a flat
surface gravity does not pull a car in any direction, but just keeps it in place. On
a slope, gravity pulls a car backwards towards the center of the earth down the ramp.
Center of gravity – Center of gravity is the exact spot on an object where there
is the same amount of weight on one side of the spot as there is on the opposite
side. A high center of gravity means a car is more unstable on a steep slope.
A low center of gravity close to a ramp will help the car stay on the ramp.To
overcome these forces there are several things that you can do to your car:
Low center of gravity – design the car to be low to the ground.
Gear down the car – By adding gears to the motors and then gearing to the
wheel you can increase the power of the motors, which will help the car climb
the ramp. There is more information about gears and gear worksheets in the
attached documents.

Vocabulary:
Gears
Gear Ratios
Gravity
Center of Gravity
Mass
Friction
Forces

Procedure
  1. Have students design and build a car that will climb a ramp.
    1. Students will need to think about friction and center of gravity to build their car. If students are unfamiliar with these concepts, you should review the concepts with them. A car that is lower to the ground will be less likely to slip. Wheels that have more traction and greater surface area on the ramp will also be less likely to slip.
    2. Students will need to use gears to gain more power. If students are unfamiliar with using gears, you should review gears and gearing down with the students.
  2. Have students program their cars to move forward for 20 seconds.
  3. Allow students to test their cars on the ramp without anything in tow.
  4. Students should redesign the car if it does not climb the ramp.
  5. Students should then test their cars while towing the weight up the ramp and redesign until the car can tow the weight.
  6. If students have trouble tell them to try various gears, wheels and designs.
Extensions: What is the steepest ramp that the car can climb?
What is the heaviest weight that the car can tow?
Calculate the gear ratio.
What is the quickest that the car can travel up the ramp?
Reference 1 http://sites.tufts.edu/stompactivitydatabase/files/formidable/68_image_1.png
Reference 2 http://sites.tufts.edu/stompactivitydatabase/files/formidable/68_image_2.png
Reference 3 http://sites.tufts.edu/stompactivitydatabase/files/formidable/Engineering-and-Science-Skills1.doc
Reference 4 http://sites.tufts.edu/stompactivitydatabase/files/formidable/Engineering_Design_Process3.doc
Reference 5 http://sites.tufts.edu/stompactivitydatabase/files/formidable/Gear_Ratio_Worksheet1.pdf
Reference 6 http://sites.tufts.edu/stompactivitydatabase/files/formidable/Gears_Worksheet1.pdf
Reference 7 http://sites.tufts.edu/stompactivitydatabase/files/formidable/Tow_truck.doc

Say “Hello”

ACTIVITY HEADER

 

 

 

Name of Activity Say “Hello”
Author STOMP
Keywords NXT, communicate, message, programming, MINDSTORMS
Subject NXTs
Grade Level 4, 5, 6, 7, 8, 9+
Time 1 Hour Total
Brief Description Students will program their NXT to communicate a message.
Lesson Objectives: To learn about how to communicate a message using MINDSTORMS NXT software.
Materials Needed: - One NXT brick per student pair.
- Computer running MINDSTORMS NXT software.
Preparation and Set Up: - Set up computers running MINDSTORMS NXT software.
- Arrange students in pairs.
- Distribute NXT bricks.
Procedure
  1. Program the NXT to display text on the screen and say hello when a touch sensor is pressed.
    1. Program the NXT to wait for the touch sensor
    2. After the touch sensor has been pressed students will program their computer to convey a message using sound and the NXT display.
    3. When the program is over clear the display.
    4. Loop the program so that the message can be displayed every time the touch sensor is pressed.
  2. Have studnets test and redesign their program. Students can change the message if they desire.
Extensions: - Add a graphic to the display.
- Build a flag or arm to wave to add to your greeting.
Reference 1 http://sites.tufts.edu/stompactivitydatabase/files/formidable/67_image_2.png
Reference 2 http://sites.tufts.edu/stompactivitydatabase/files/formidable/67_image_3.png
Reference 3 http://sites.tufts.edu/stompactivitydatabase/files/formidable/say_hello.doc

Snail Car

ACTIVITY HEADER

 

 

 

Name of Activity Snail Car
Author STOMP
Keywords NXT, car, travel, slow, snail race, last, finish line, winner, motion, gears
Subject NXTs
Grade Level 4, 5, 6, 7, 8, 9+
Time 1 Hour Total
Brief Description In this activity, students will construct an NXT car which is capable to traveling extremely slowly. The cars will compete in a snail race with the last car to cross the finish line crowned as the winner.
Lesson Objectives: To learn to build with cars for slow motion.
Materials Needed: - NXT Car
- Gears
- Computers running NXT software
Preparation and Set Up: Set up computers running NXT software.
Arrange students into groups of two.
Distribute materials to students.
Procedure
  1. Have students build an NXT car that utilizes a series of gears and axles.
  2. Have students program their cars to travel forward for 20 seconds.
  3. Set up a race course and let students race their cars against each other.
  4. If there is time, allow students to redesign their cars.
Reference 1 http://sites.tufts.edu/stompactivitydatabase/files/formidable/Engineering-and-Science-Skills.doc
Reference 2 http://sites.tufts.edu/stompactivitydatabase/files/formidable/Snail-Car.pdf

Challenge Swap

ACTIVITY HEADER

 

 

 

Name of Activity Challenge Swap
Author STOMP
Keywords swap, challenge, objective, materials, procedure, method, assessment
Subject Non-LEGO
Grade Level 4, 5, 6, 7, 8, 9+
Time 1 Hour Total
Brief Description Students will swap challenges that they design for each other and try to do the given challenge. The challenge must include an objective, a materials list, procedure, and methods of assessment.
Lesson Objectives: - To develop and plan activities.
- To review previous skills.
Materials Needed: - Paper and pencils.
- Additional materials to be decided by challenge writer.
Preparation and Set Up: n/a
Procedure
  1. Have students create any design challenge they would like for someone else in the class.
  2. The challenge can have any focus or skill level as decided by the teacher. Give any constraints you want to the class.
  3. Have students create a materials list and methods of assessing his or her solution.
    1. Why does someone need to do this challenge?
    2. How will someone know if he/she has completed the challenge?
  4. Tell students to keep in mind the amount of time allowed for completing the challenge.
Reference 1 http://sites.tufts.edu/stompactivitydatabase/files/formidable/Challenge-Swap-5.pdf

Line Follower

 

ACTIVITY HEADER

 

 

 

Name of Activity Line Follower
Author STOMP
Keywords car, light sensor, line, follow, loops, loop, ports
Subject and Grade Level NXTs, 4, 5, 6, 7, 8, 9+
Time 1 Hour Total
Lesson Objectives: - To learn to program using light sensors
- To learn to program using loops
- To practice building with an NXT kit
Materials Needed: - NXT Kit
- Solid colored floor or mat
- Tape that contrasts floor or mat
- Planning and Final Design Worksheets
- Computers running MINDSTORMS NXT-G Software
Preparation and Set Up: - Set up a line for students car to follow
- Set up computers running NXT software
- Photocopy worksheets
- Arrange students in groups of two
- Distribute necessary materials
Procedure
  1. Have students plan out their design and program on paper before distributing materials. Help students think about the program by asking the following questions: How can the light sensor help you detect the line? What should happen when the car senses the line? What about when the light sensor detects the floor again? What is a loop? How will a loop be helpful in your program?
  2. Have students build cars using NXT-G kits, or provide a pre-built car to each group.
    1. The light sensor should be pointed at the ground.
    2. Make sure the car can easily turn by attaching a skid plate or attaching a swivel wheel to the front of the car.
    3. Attach the light sensor to the front of the car.
  3. Have students program their cars.
    1. The car should follow a line using a light sensor.
    2. Program one motor to turn until the light sensor detects the line.
    3. Use the “Wait for” block to use the light sensor data.
    4. When the light sensor detects the line, have the first motor stop and the other motor turn until the light sensor detects the floor, at which point the second motor will stop.
    5. Insert a loop around the program so that the car continually follows the line.
  4. Allow students to test their design on a tapeline on the floor.
  5. Tell students that they may redesign their car as this is an important step in the Engineering Design Process.
  6. When students have completed their cars have them fill out their final design sheets.
  7. Gather students together as a class and let each group share their car. Discuss the activity as a class.
Extensions or Modifications: - Create a theme for the project such as “rounding the bases” so that the students cars have to do more than just follow a line.
- Have a challenge at the end of the line. For example, at the end of the line there is a box that the NXT car must pick up. Students must design a robotic arm to lift the box.
Sample Image 1 http://sites.tufts.edu/stompactivitydatabase/files/formidable/60_image_2.jpg
Sample Image 2 http://sites.tufts.edu/stompactivitydatabase/files/formidable/60_image_3.png
Sample Image 3 http://sites.tufts.edu/stompactivitydatabase/files/formidable/Line-Follower.pdf
Sample Image 4 http://sites.tufts.edu/stompactivitydatabase/files/formidable/Building_Design_Sheet.pdf
Sample Image 5 http://sites.tufts.edu/stompactivitydatabase/files/formidable/Final_Design_Sheet.pdf

Switch to our mobile site