NXT Elevator

ACTIVITY HEADER

 

 

 

Name of Activity NXT Elevator
Author STOMP
Keywords Simple Machines, Civil Engineering, NXT
Subject NXTs
Grade Level 4, 5
Time 2 Hours Total
Brief Description Students construct an NXT-based elevator to move a platform from one level to another and back. When completed the elevator should use a motor and a sensor to control it.
Lesson Objectives: - Learn what makes a structure sturdy
- Learn how to use pulleys and gears
- Practice basic programming
Materials Needed: - NXT kits
- extra Legos (mostly beams)
Preparation and Set Up: Make sure NXTs and Legos are available in the classroom.
Necessary Background None
Procedure - Introduce the activity with a story depending on the context. Go over the engineering design process, emphasizing that they should plan and sketch their design first – Sign off on designs before they can start building – Give students the rest of the first hour to build their designs. – At beginning of second hour, make sure all groups have finished building and start with programming the elevator. They should all use at least one sensor and one motor to control the elevator. (Students should have some prior experience with programming) – Test all of the elevators as a class

Detective- Mechanical Engineering

ACTIVITY HEADER

 

Name of Activity Detective-Mechanical Engineering
Author Kirsten Jorgensen and Hannah Garflied
Keywords rube goldberg, mechanical, simple machines, gears, inclined planes, pulley, lever, wedgem screw
Subject Simple Machines
Grade Level 4, 5
Time 1 Hour Total, 2 Hours Total
Brief Description Lesson 3 of Detective Engineer: Intro to Different Types of Engineering unit – mechanical engineering.
Lesson Objectives: -understand what mechanical engineers do and design-become familiar with the different types of simple machines

-create a rube goldberg device

Materials Needed: LEGO Simple Machines KitExtra Lego Pieces

a few NXT touch sensors

Preparation and Set Up: Arrange students in pairs with 1 simple machine kit per group
Procedure Continuation on the “Detective” Story line that we are following in this unit. Give the next part of the crime. We sent some of the shrapnel  they filtered from the last week and determined that the bomb that exploded in the museum of science was a bomb that was triggered by a button next to the bomb. There were no finger prints on the trigger. Discuss how this is possible? eventually get to Rube goldberb device because they wouldn’t be blown up if they were a distance away and triggered the bomb. What kind of engineer could build this? First we have an open discussion on mechanical engineers-what they do and why this field is different from other types of engineering–moving parts, robotics etc. What is a rube goldberg device? How do they work. Open discussion about what a simple machine is, why we use them, why they’re helpful, what the different kinds are and what their specific uses are (write on board for reference later). Project: Create a rube goldberg device with 2 different simple machines that can trigger a button (NXT touch sensor) from across the desk — has to be far enough away so they don’t blow up Give students 10-15 minutes to develop an idea and have a plan before they start. Hand out simple machines kits  after it is confirmed that they have a relatively good idea of what they are going to build and assist students as needed (how to work a gear box and how to make the certain simple machines because a lot of them have never seen how gears work) Ended up using a second week for this project so they could finish. Had pairs present their projects to the class. Had them talk about their idea and which simple machines they used.
Extensions: If they finish early, try to have them implement a 3rd simple machine. (only 1 group finished early)
Umbrella Unit/Curriculum (if applicable) Detective Engineer: Intro to Different Types of Engineering

Inclined Planes

ACTIVITY HEADER

 

 

 

Name of Activity Inclined Planes
Author STOMP
Keywords inclined planes, ramps, lego, simple machines, found materials
Subject Simple Machines, LEGO Building
Grade Level 4, 5
Time 1 Hour Total
Brief Description Students will practice building inclined planes of all sorts (tubes, ramps, tilts) in order to have a ball object roll across the table/space.
Lesson Objectives: Use engineering design process to work and collaborate in groups efficiently.
Introduce students to building inclined planes and inspire creativity for the future rube goldberg final project.
Materials Needed: found materials, legos, any classroom materials that seem helpful, tape, poster board, cardboard.
Preparation and Set Up: Spend about five-ten minutes gathering groups and encouraging brainstorming before building. Provide each group an NXT kit for lego parts, tape, and poster board/cardboard.
Necessary Background Inclined planes, slopes, speed, force
Procedure
  1. Review inclined planes.
  2. Identify the goal: to allow ball to travel at least 2-3 inclined planes across a table or space.
  3. Divide into groups and allow students to develop possible solutions.
  4. Before giving materials allow each group to decide the best possible solution for their group given certain materials.
  5. Allow students to construct/build.
  6. Allow 5 minutes for Testing for each group before redesigning.
  7. Encourage communication within groups.
Extensions: Tell students to use more than 2-3 inclined planes.
Have students incorporate a previous activity (an other simple machine) into their works.
Umbrella Unit/Curriculum (if applicable) Simple Machines

Little Johnny and his Pet Cow

ACTIVITY HEADER

 

 

 

Name of Activity Pulleys- Little Johnny and his Pet Cow
Author Matthew Mueller
Keywords Pulleys, simple machines, weighing, balancing, well
Subject Simple Machines
Grade Level 3, 4, 5, 6, 7
Time 1 Hour Total
Brief Description Little Johnny’s pet cow has fallen down a well! You need to come up with a system of pulleys that will help little Johnny lift his cow out of the well.
Lesson Objectives: Get kids to understand the idea that pulleys can both change direction of motion, and lessen the amount of force needed to lift a heavy object.
Materials Needed: Lego pulleys, beams, axles, string, weights
Necessary Background A basic understanding of pulleys and their uses.
Procedure First have the kids try and make a wall of pulleys and show how it is easier to pull up a heavy object when using the pulleys.  Then challenge the kids to build a wall of pulleys that is capable of balancing as many weights on one side with just one weight on the other side.
Extensions: They can always try to balance more weights on one side and show that the more pulleys there are, the lighter the load will seem on the other side.
Umbrella Unit/Curriculum (if applicable) Simple Machines

Simple Machine Crane

ACTIVITY HEADER

 

 

 

Name of Activity Simple Machine Crane
Author Matt Mueller, Emily Naito, Mary McCormick, Karman Chu
Keywords Simple machines, pulleys, gears
Subject LEGO Building
Grade Level 5
Time 3 Hours Total
Brief Description Students design and build a crane system using simplemachines that will lift as much weight from the floor as possible. The simple machine system will be attached to a motor on the desk. Students may use string attached to motor, gears, pulleys to lift the weights.
Lesson Objectives: Designing and building simple machine systems, using pulleys and gears in combination, employing engineering design process to design, build, and test systems.
Materials Needed: LEGO bricks, gears, pulley wheels, string, motors, weights, cup for weights.
Preparation and Set Up: Strings attached to cups that can hold weights, worksheets for students to learn about gears and pulleys.
Necessary Background Simply machines background on gears, pulleys functions and uses.
Procedure 1. Clarify the problem: lifting as much weight as possible from the floor to the desk using simple machines - gears and pulleys – that are attached to a motor on the desk. 2. Talk about how it might work.  What do gears do? What do pulleys do? 3. Brainstorm designs in groups. 4. Get materials and start building. 5. After 1 class period, review gears and pulley functions and uses.  Work more on designs. 6. Return to building, testing and revising as needed. 7. Come together as a class to talk about different designs.  Test how much weight each design can hold, and make it collaborative by seeing how much the whole class holds together (summation of weights). 8.  Discuss as group how the designs worked. 9. Redesign – If time, let students incorporate what they lave learned to redesign.
Extensions: Class discussions:
How might these cranes be more effective with other simplemachines? How do cranes work in real life? Where do we seecranes?
Redesign could be to make it more challenging by lifting weight faster/slower.
Reference 1 http://sites.tufts.edu/stompactivitydatabase/files/formidable/GEARS-AND-PULLEYS-WORKSHEET.docx

Wheel and Axle Lesson

ACTIVITY HEADER

 

 

 

Name of Activity Wheel and Axle Lesson
Author STOMP
Keywords Simple Machines, Wheel and Axle, NXT
Subject NXTs, Simple Machines
Grade Level 5, 6, 7, 8
Time 2 Hours Total
Brief Description Students work in groups to build a vehicle using NXT kits that includes a wheel and axle and has to be able to hold a ball. To discourage everyone from using a basic car design, their designs cannot have exactly four wheels. Once their design is complete (including motors and the NXT brick), each group learns how to use on brick programming to make their vehicle move the ball across their workspace.
Lesson Objectives: Improved understanding of the wheel and axle as a simple machine. Students gain skill building with NXT kits and using on brick programming.
Materials Needed: -NXT kits (1 per group)
-extra Legos
Preparation and Set Up: Consider bringing extra Legos for groups to build with, prepare to talk about the project in terms of the Engineering Design Process and simple machines.
Necessary Background None
Procedure
  1. Introduce the project by talking about the importance of the wheel and axle as a simple machine.
  2. Tell them the objective: to make a vehicle that can’t have exactly four wheels, includes the NXT brick and motors, and is capable of carrying the NXT ball across their workspace.
  3. Explain the project in terms of the Engineering Design Process, discuss which steps would be best to focus on for this project.
    • We drew the entire Engineering Design Process on the board and went over each step, asking them how they though the steps fit into this activity. At the end of the discussion we decided that the most important steps for this activity would probably be developing/ sketching solutions, prototyping, and communicating with other group members.
  4. Separate students into groups of 3-5.
    •  Most teachers already have some method of grouping students, or know which students shouldn’t be in a group together.
  5.  Give them the rest of the first hour to sketch a design and then build it.
    • Make sure each group includes motors and the NXT brick into their design.
  6.  If the lesson is taking place over two, one-hour blocks leave 5-10 minutes at the end of the first block for cleanup.
  7. Once a group has their vehicle fully assembled, show them how to make it move using on brick programming.
    • Make sure each member of the group gets a chance to try programming, and show them how to do things like change direction, turn, and loop through a set of instructions.
  8. If any of the groups finish early, show them how to add sensors and change the on brick program to respond to sensor input.
  9. Leave 15 minutes for each group to demonstrate their finished vehicle and clean up.
Umbrella Unit/Curriculum (if applicable) Simple Machines

Introduction to Simple Machines

ACTIVITY HEADER

 

 

 

Name of Activity Introduction to Simple Machines
Author STOMP
Keywords Simple Machines, Pulley, Wheel and Axle, Gears, Wedge, Inclined Plane, Lever, Screw
Subject Simple Machines
Grade Level 4, 5, 6, 7, 8
Time 1 Hour Total
Brief Description Set up an example of each type of simple machine machine at stations around the classroom. Each station should have NXT kits, or Lego/ found materials, available for students to try mimic building each machine of their own design. It is important that for each simple machine there is an example of the machine being used in the real world (this can be done with pictures at each station, or video). This will help to get them to think about their own real world examples. End with a general discussion and “show and tell” of the simple machines they made during class. If there is time also discuss how each simple machine could be improved.
Lesson Objectives: Introduce students to the seven simple machines. Prepare students for a curriculum involving building/ using simple machines.
Materials Needed: -NXT kits (for preparing examples)
-Lego simple machine kits
-real world example pictures/ videos
-Legos in classroom for students to make their own
-assorted found materials
Preparation and Set Up: Construct (out of Legos or found materials) an example of each simple machine before going into the class. Find a way to display pictures or video of a real world example of each simple machine to display at each station.
Necessary Background None
Procedure
  1. Prepare an example of each simple machine before going into the classroom
    • Note: All of the simple machines could be built with either Legos or found materials. We found that Legos worked best for building the inclined plane, wheel and axle, pulley, gear, and lever examples. We used Tetrix to demonstrate the screw and a doorstop to demonstrate the wedge.
  2. Print a picture of a real world example for each simple machine.
  3. Before going to the classroom, make sure they have enough NXT kits, assorted Legos, or found materials for students to build their own simple machine examples.
    • Consider bringing in extra supplies and Lego pieces since NXT kits don’t work extremely well for building every type of simple machine.
  4. In the classroom, introduce each simple machine and set up the examples at seven stations around the classroom. Ask them to think about (or write down) what tasks each machine could be used for, how do they make these tasks easier, and how the examples that the STOMPers built could be better.
  5. Allow students to walk around between stations and attempt to build their own version of each simple machine.
  6. Leave the last 10 minutes for students to present the examples they built and discuss the points they considered during the class time.
    • More time might be required depending on how much cleanup there is.

Spin Art

ACTIVITY HEADER

 

 

 

Name of Activity Spin Art
Author STOMP
Keywords spin art, motors, gears
Subject Simple Machines
Grade Level K, 1, 2, 3, 4, 5
Time 1 Hour Total
Brief Description Legos are used to create a “spin art machine” to attach to a box.
Lesson Objectives: - Understand how to use gears and motors together.
Materials Needed: - A box with a flap at the top and a small square to squirt paint into
- two to three gears of different sizes per spin art machine
- Lego motor
- Lego beams
- Axles
Preparation and Set Up: - Prepare a box with a flap opening and a small square opening at the top of flap.
- Prepare one box per group of students
- split students into groups of 4-5 per group
- Assemble a kit with a few axles, lego beams, and a few gears of different sizes
Necessary Background Understand how to use motors.
Understand basics to gears
Procedure Have students construct a small machine using a few Legos and gears. Once the students build the machine, attach a motor to the axle of the gear system.
Modifications: When building gear system, advise students to make a simple gear system. More than two gears will make a gear train that will be hard to move with the motor.

Mariana & Alyssa Semester Outline

Outline:

(journal for observations? or posters for drawing?)

-giving time to play with materials before activity starts (exploration)

-defend observations to each other

-can we make the time shorter?

-breaks in the middle to talk about things as a class

- ask who will leave so they can be paired together, or just partnering generally (email)

-check in with teacher during exploration time?

-carrot-and-stick thing for balloons etc

 

September 23- Introduction and spaghetti towers activity

September 30- failure analysis (of structures that we have pre-built), straw structures- towers, bridges, strength, etc., building animals out of straws

October 7- lego vehicles, ramp (no motors), play around with ramp size/slope and wheel size  etc, maybe with balloons/rubber bands for propulsion

October 21- introduce motors an gears, maybe an activity with vehicles and speed, maybe something new

October 28- dinosaur tail activity (using simple machines and pulleys for something other than wheels)

November 4- design and construction of an imaginary animal based on qualities picked from a hat

November 11- obstacle course with robot animals, trial run 1

November 18- redesign of robot animals

November 25- redesign of robot animals

December 2- obstacle course run 2

Simple Machines Mini Golf Course

ACTIVITY HEADER

 

 

 

Name of Activity Simple Machines Mini Golf Course
Author Daniel Meer (Elissa Milto)
Keywords mini golf, create, obstacle, 1 moving part, practical design, imagination, requirements, Simple Machines, 2 Hours Total
Subject Simple Machines, Non-LEGO
Grade Level K, 1, 2, 3, 4, 5, 6, 7, 8, 9+
Time 2 Hours Total
Brief Description Have students create a mini golf course, giving each pair the task of creating a single obstacle
and hole) for the course. Must have 1 moving part.
Lesson Objectives: - Experience in practical design.
- Implementing imagination to fulfill requirements while making an interesting requirement.
Materials Needed: - Simple Machine Kits.
- Marbles (lots of marbles).
Necessary Background Go to Candystand.com and choose the “minigolf” game for ideas of obstacle courses and such.
It helps to show this to the students if they are old enough to turn them into practical realities
as opposed to trying to recreate life savers floating down a river.
Procedure -present project -Give groups paper to plan -Let them build -put all together, test
Extensions: - Must have 2 moving parts.
- All sections must connect together.

Switch to our mobile site