Detective- Electrical Engineering

ACTIVITY HEADER

Name of Activity Detective Electrical Engineering
Author Hannah Garfield & Kirsten Jorgensen
Keywords detective, electrical, circuits, mystery, squishy circuits, short circuit, light bulb, museum
Subject Non-LEGO
Grade Level 4, 5
Time 1 Hour Total
Brief Description 1st lesson in “Detective Engineer/Intro to Engineering Unit”

In this lesson the students will learn the basic concepts of circuits and what electrical engineers design.

Lesson Objectives: - understanding basic circuit
- understanding short circuit
- idea of what electrical engineers design
Materials Needed: - white board/black board and markers/chalk
- play dough (1 tub per group)
- 9 volt batteries (1 per group)
- LED lights that work with squishy circuits (1 per group, but probably bring more)
Procedure Detective story: There was a break-in at the Museum of Science. Something valuable stolen or whatever you want to say (more details about break-in so it sounds believable). You (students) have been hired as the detective engineer on the case. You need to solve the crime using your engineering skills. Upon arriving at the crime scene you cannot see anything since the bomb/explosion/etc. disrupted the museum’s lighting system and all of the lights are off. Ask students what type of engineer they need to be to solve this step of the crime. (Eventually they get to electrical.) Discussion with students about what electrical engineers design. Introduce the basic idea of a circuit – idea that electrons are flowing through circuit to make light illuminate, for example. Break students into groups of 2 and distribute squishy circuit materials. Allow students some time to play on their own with trying to get the light to light up. After 5- 10 min or so, bring class back together and discuss what’s working and what isn’t. Draw a battery, clearly indicating + and – ends, and a light bulb, also with clear + and – ends, on the board. Ask for volunteers to complete the circuit and ask them/the class why they connected wires to what and where, etc. Someone will most likely draw a short circuit and if not draw one yourself. Ask students if this circuit would light up the bulb and why or why not. Students can also come up and in a different color illustrate where they think they electrons are going if that helps them understand/get their point across. Allow students to return to their groups and try to make the light bulb light up again. With about 10-15 min left of class, bring students back together. Have a complex-ish circuit (made of only batteries, wires, and light bulbs) drawn on the board. Intentionally draw some short circuits, some wires that don’t connect to anything, etc. Tell students that this is the museum’s lighting circuit system and ask them to tell you what’s wrong with it and why. Students solve the broken circuit and the lights go on in the museum! End of class.
Extensions: If students get the bulb to light up early, give them additional light bulbs to try to make those light up as well and/or design a switch (and have them figure out what that is).
Umbrella Unit/Curriculum (if applicable) Detective Engineer: Intro to Different Types of Engineering

LEGO House

ACTIVITY HEADER

 

 

 

Name of Activity LEGO House
Author Emily Taintor
Keywords LEGO, house, building, town, electricity, circuit, light, bulb, constraints, construction, squishy circuits
Subject Non-LEGO, LEGO Building
Grade Level 3, 4, 5
Time 3 Hours Total
Brief Description Students will build LEGO houses that are lit by LED bulbs to certain design constraints.
Lesson Objectives: - Introduce students to LEGO building under design constraints
- Familiarize students with the process of planning and implementing a circuit
Materials Needed: - LEGO Bricks
- LED Bulbs
- Wires (or playdough)
- House bases (for the design constraint)
- Batteries
- Alligator clips
Preparation and Set Up: - Give each group a base, bricks, an LED bulb, and wire (or playdough)
- Explain design constraints
Necessary Background Basic electricity information, LEGO familiarity
Procedure
  1. Distribute materials
  2. Explain design constraints
  3. Students should begin by constructing a LEGO House to whatever design constraints the instructors decide upon. Our class had size and height constraints (had to fit on the small base, had to be big enough for a LEGO man to live in) but they could be any sort of design constraint, service learning-related or otherwise. During the building process the students should be considering how they want to wire the house so that an LED bulb can light the inside of the house from a battery on the outside of the house.
  4. Once the house has been constructed, have the students plan out the circuit that they want to use to light the house. We had the students use just one LED bulb so the circuits were very basic.
  5. Students should wire the house so that the LED bulb lights the inside of the house from a battery on the outside. We used playdough instead of wires to create the circuit to build off of the squishy circuits activity, so they had a lot of flexibility on implementing the actual circuit.
  6. Students should assemble their houses in one big “town” and present their houses to the rest of the class. Students should be able to explain their circuit to the class, as well.
Extensions: - Make the house more realistic (make the light connect to the ceiling or look like a lamp)
- Give more specific design constraints
- Use more than one bulb per house – would create better diversity of solutions
- Have groups of students create ‘neighborhoods’ so that they have to combine their circuits to connect to one communal energy source

Switch to our mobile site