Act Out Electricity!

ACTIVITY HEADER

 

 

 

Name of Activity Act Out Electricity!
Author Emily Taintor
Keywords electricity, interactive, act out, non-lego, 4-6, introduction to electricity, resistor, lamp, bulb, wire, battery, switch, 1 Hour Total
Subject Non-LEGO
Grade Level 4, 5, 6
Time 1 Hour Total
Brief Description Students are assigned to be a circuit element and act it out in a complete circuit.
Lesson Objectives: - Solidify the students’ understanding of electricity.
- Give the students a physical understanding of what different circuit elements do.
Materials Needed: - Attached materials.
Preparation and Set Up: - Split the students into small groups.
- Give each group a set of materials.
- Give each group a goal for their circuit so that they can set it up and act it out to show the rest of the class.
Necessary Background - Electricity terms:
– Resistor
– Battery
– Switch
– Lamp (Light Bulb)
– Motor
Procedure
  1. Split the students up into groups.
  2. Assign each group a specific goal for a circuit.
  3. Let the students take time to plan out how they will act it out with the given resources.
  4. Have the students act out their circuit for the rest of the class.
Extensions: Add in more complex circuit elements, programming, or use of breadboards.
Reference 1 http://sites.tufts.edu/stompactivitydatabase/files/formidable/Materials.pdf
Umbrella Unit/Curriculum (if applicable) Introduction to Electricity

Wire Maze Challenge

ACTIVITY HEADER

 

 

 

Name of Activity Wire Maze Challenge
Author STOMP
Keywords Electrical Engineering, maze, loop, wire, current, switch, open circuit, closed circuit
Subject Non-LEGO
Grade Level 4, 5, 6
Time 1 Hour Total
Brief Description Students will be constructing a game made out of a simple circuit with a movable loop of wire that can be guided over a curved “maze” wire. The object of the game will be to guide the loop along the maze without touching the loop to the maze wire. If the student does touch the loop to the wire, the circuit will be complete, turning on the light bulb, and signaling the touch.
Lesson Objectives: - To teach students about electrical circuits.
- To teach students about electrical currents.
Materials Needed: Per Group:
- One 9V battery w/connection plate and attached wires.
- 24 inches of un-insulated wire (stripped insulated wire between 20 – 24 AWG should work).
- One 1-Watt light bulb w/ lamp base.
- One 24 inch length of insulated wire w/stripped ends.
- One 8 inch length insulated wire w/stripped ends.
- Electrical tape.
- Cardboard base (optional).
- Four alligator clips (optional).
- Popsicle stick or pencil.
Preparation and Set Up: - Show the first five slides of Powerpoint attached.
- Break the class into groups of two.
- Distribute worksheets and building materials.
Necessary Background Vocabulary:
Electrical current
Switches
Open circuit
Closed circuit
Procedure
  1. Connect 1 wire of the battery connection plate to the light bulb using an 8 inch strip of wire.
  2. Attach a 24 inch length of insulated wire to the other side of the light bulb. The end of the wire not connected to the lamp should be stripped of insulation for the last three inches of its length.
  3. Curl the stripped end of the long wire into a small loop approximately ½” across.
  4. Using electrical tape, create a handle for the wire ring by fastening the remaining wire to the end of a pencil or popsicle stick.
  5. Using a 24 inch strip of wire without insulation, create a looping and bending “maze” that the ring will have to follow.
  6. Put one end of your maze through the wire loop on the end of the popsicle stick, and then tape both ends to the cardobard base so that the maze sticks up into the air.
  7. Use a gator clip to attach the other terminal of the battery connection plate to the end of the maze. Leave one end of the un-insulated maze taped to the table with nothing else connected to it. You should now see that when your loop touches the wire path the light bulb turns on!. See if you can guide the loop along the maze without touching the wire and turing on the light.
  8. Discuss with the class why the light bulb only goes on when the loop touches the wire.
Extensions or Modifications: If you finish with the wire maze with extra time remaining, try to figure out a way to add an additional loop to the maze. There are two different ways to wire this circuit – you can either have the light bulb turn on when either one of the loops touches the wire, or you can have it turn on only when both loops are touching the wire. Draw your new circuit below using the electrical engineering symbols on the previous page.

The diagrams below are two possible approaches to this extension.

Modifications:
Hint:
Be careful not to connect the battery terminals together if there is no resistor in between
them! This creates what is known as a short circuit, and if left connected for too long will
quickly drain the battery.

Reference 1 http://sites.tufts.edu/stompactivitydatabase/files/formidable/maze1.png
Reference 2 http://sites.tufts.edu/stompactivitydatabase/files/formidable/maze2.png
Reference 3 http://sites.tufts.edu/stompactivitydatabase/files/formidable/maze3.doc
Reference 4 http://sites.tufts.edu/stompactivitydatabase/files/formidable/maze4.pdf

Introduction to Motors

ACTIVITY HEADER

 

 

 

Name of Activity Introduction to Motors
Author STOMP
Keywords motor, wire, batter, pulley, connection, electricity, axle, band, primary colors
Subject Simple Machines
Grade Level K, 1, 2, 3
Time 1 Hour Total
Lesson Objectives: - To familiarize students with the LEGO motor, wire, and battery pack and how they function
Brief Description In this activity, students will learn to connect the LEGO motor, wire, and battery. Students will use the spinning motor to make a piece of art work that they created. If students have made pulley walls, they will attach their motors to the pulley wall as well.
Materials Needed: - LEGO Simple Machine Kits.
- ‘Color Circles’ Worksheet.
- Extra batteries or battery packs.
- Scissors.
- Tape.
- Markers, crayons, or colored pencils in primary colors.
- Color wheel to explain mixing of primary colors.
Preparation and Set Up:
- Arrange students in pairs.

- Distribute ‘color wheel’ worksheets.
- Distribute markers, crayons, or colored pencils.
- Check that battery packs are working.

Necessary Background N/A
Procedure
  1. Introduce the new pieces.
    1. Explain that these pieces use electricity and have moving parts. This means that the students will have to be EXTRA CAREFUL and if the pieces are not used properly they will be taken away.
      1. Motors and things attached to motors should NEVER touch people.
      2. Motors should be run at your seat or on the floor. You should NEVER walk around with your motor.
    2. Introduce the new pieces.
    3. Show students how to connect the pieces. Talk about electricity and how it travels through the wire from the battery pack to the motor and that this is why the metal pieces must be connected for the motor to work properly.
  2. Introduce the challenge by talking about primary colors and what happens when you mix two primary colors. Demonstrate what a color wheel is and how two primary colors produce the color between them.
  3. Show students how to color and cut out the circles on their ‘color circles’ worksheet.
  4. Have students color one wheel with two primary colors and the other wheel whatever the students want.
  5. Tape the color circles to a pulley wheel and attach the wheel to a motor that is hooked to a battery pack.
  6. Let the students explore what happens when their color circles spin.
  7. Have students attach their pulley walls consisting of 4 pulley wheels to their motor using an axle extender.
  8. Show students how they can attach 4 color wheels to the same wall and how they will all spin at once.
Extensions or Modifications: - Allow students to do extra color designs on the ‘Color Circle’ worksheet (print out extras).
Sample Image 1 http://sites.tufts.edu/stompactivitydatabase/files/formidable/color_circle.pdf

Switch to our mobile site