A two-component pre-seeded dermal–epidermal scaffold

1. Introduction

Adult skin is composed of the epidermis and dermis: the top layer of the epidermis is the stratum corneum, a thin, water-tight layer of dead, flattened cells covering rapidly dividing keratinocytes beneath. The underlying thicker dermis is a complex association of fibroblasts, blood vessels, nerve fibers and lymphatics embedded in the extracellular matrix (ECM) [1,2]. The dermis and epidermis are connected by the dermal–epidermal junction, which is composed of the basal cell plasma membrane, a multilayered structure which contains hemidesmosomes and which provides epidermal–dermal adherence and mechanical support for the epidermis, and acts as a barrier to the transfer of cells and of some large molecules across the junction [3]. Skin injury from thermal trauma and other causes is an important public health problem [4]; third-degree burns, which involve damage to hundreds of thousands of patients every year [5]. In full-thickness defects, particularly in lesions more than 4 cm across and 0.4 mm deep, natural healing is inadequate due to a lack of remaining regenerative elements [1,6–8], and grafting of skin is likely to be necessary [6]. Common skin grafting techniques involve transplanting split-thickness skin [9], which contains the epidermis and a variable fraction of the underlying dermis. The availability of donor skin is a limiting factor requiring the development of engineered dermo-epidermal skin substitutes analogous to full-thickness autologous skin [9].

Extant commercially available skin substitutes have limitations. The only commercially available bilayered scaffold skin substitute (combination of Laserskin® and Hyalograft3-D™) requires multiple procedures [4,10–12]. Collagen-based skin substitutes containing dermal fibroblasts and keratinocytes suffer from limited anchorage and keratinocyte survival, poor structural integrity and incomplete cell differentiation [13,14].

Patients could benefit greatly from a scaffold which mimics the two-compartment structure of skin and that could be easily handled and applied, rapidly adapting to complex three-dimensional lesion sites and composed of materials that promote angiogenesis (fibrin [15–17] and hyaluronic acid [18]). Such scaffolds should be applicable to any depth or shape of lesion, and should allow the...
co-culture of cells by furnishing tailored biological and mechanical properties for each compartment, speeding up the healing process by the simultaneous regeneration of dermis and epidermis [13,19]. We have designed an in situ forming dermal–epidermal scaffold which is adaptable to differing lesion shapes, and is designed to mimic the bilayer structure of human skin while providing instructive cues for cell adhesion, migration and proliferation. The dermal component consists of fibrin and cross-linked hyaluronic acid (HAX), modified with a peptide derived from the cell adhesion molecule fibronectin to improve cell attachment. The dermal layer provides a porous, proteolytically degradable bioactive scaffold where dermal fibroblasts can proliferate and form a tridimensional matrix. The epidermal component is a mechanically robust membrane of HAX combined with poly-L-lysine (PLL) to provide anchoring to the dermal layer via aldehyde–amine interactions and coated by laminin-5 to enhance the attachment of keratinocytes (Fig. 1). In a clinical context, the dermal hydrogel with fibroblasts would be injected into the lesion, crosslinking in situ and adapting to the lesion shape in seconds, with immediate subsequent application of the epidermal membrane seeded with keratinocytes on the top surface. The free aldehyde groups of the dermal hydrogel would react covalently with amines of the PLL-modified epidermal hyaluronic acid (HA) membrane layer to create a single structure in situ.

2. Materials and methods

2.1. Materials

Sodium hyaluronate (MW 351–600 kDa and 1.2–1.8 MDa) was purchased from LifeCore Biomedical (Chaska, MN, USA). Adipic acid dihydrazide (ADH), 1-ethyl-3-[3-(dimethylamino)-propyl]carbodiimide (EDC), sodium hydroxide, hydrochloric acid, hydroxybenzotriazole, sodium periodate, ethylene glycol, Dowex®

Fig. 1. Schematic of the bilayered epidermal–dermal scaffold. (A) An in situ gelling dermal component (blue) containing human dermal fibroblasts (green) is applied into the lesion and adapts to its shape. (B) A thin epidermal membrane pre-seeded with keratinocytes is applied on top of the dermal layer. Inset: negatively charged laminin (light green) interacts with positively charged PLL in the membrane (pink). (C) The epidermal layer protects the dermal part from dehydration and infection. Inset: free amines of the epidermal component (pink) react with aldehydes in the dermal component (blue) to form covalent imine interactions which glue the two components together to form a single composite scaffold.
50WX8–400 resin, N-hydroxysulfosuccinimide (S-NHS), 4,6-diamino-2-phenylindole (DAPI), phalloidin, poly-l-lysine (PLL; MW 4000–15,000 Da), fluorescein isothiocyanate (FITC)-labeled PLL (MW 30–70 kDa), thrombin (300 NIH units mg⁻¹), fibrinogen from human plasma, anhydrous N,N-dimethylformamide (99.8%), paraformaldehyde (PFA), hyaluronidase and TritonX-100 were obtained from Sigma (St. Louis, MO, USA). Dialysis membranes (MW cutoff 3.5 kDa) were purchased from Spectrum Labs (Rancho Dominguez, CA, USA). The fibronectin active fragment, Gly–Arg–Gly–Asp–Ser, was purchased from Peptides International (Louisville, KY, USA). Laminin-5 protein, mouse monoclonal to Gly–Arg–Gly–Asp–Ser, was purchased from Peptides International (Rancho Dominguez, CA, USA). The fibronectin active fragment, Gly–Arg–Gly–Asp–Ser, was purchased from Peptides International (Louisville, KY, USA). Laminin-5 protein, mouse monoclonal to Gly–Arg–Gly–Asp–Ser, was purchased from Peptides International (Rancho Dominguez, CA, USA).

2.4. Activation of HA-CHO by the fibronectin active fragment

Prior to modification with the fibronectin active fragment, HA-CHO polymer was ion exchanged overnight in Dowex® 50 W X8-400 resin. For this, 40 mg of the HA-CHO was dissolved in PBS. The carboxylic acid group on HA-CHO was activated by S-NHS (3 equivalents). The reaction was mediated by ECD-HCl (3 equiv) for 30 min. After filtration using Amicon® units (MW cutoff 10 kDa), 5 mg of the cell adhesion peptide fibronectin active fragment (MW 490.47 Da), was conjugated to the activated HA-CHO through amide bond formation. After the reaction, the HA-GRGDS solution was purified by exhaustive dialysis (MW cutoff 3.5 kDa), frozen in liquid nitrogen and lyophilized. The change in the molecular weight from the HA-CHO to the HA-CHO-GRGDS was verified by gel permeation chromatography (GPC). The degree of peptide modification per available carboxylic acid was determined by 1H NMR.

2.5. Preparation of the dermal component for fibroblast culture

Solutions of HA-CHO-GRGDS (40 mg ml⁻¹), thrombin (6.25 mg ml⁻¹, 300 NIH units mg⁻¹), HA-ADH (40 mg ml⁻¹) and fibrinogen (83.4 mg ml⁻¹) were prepared in DMEM containing 10% FBS. Two independent mixtures were created: (i) 200 µl of HA-CHO-GRGDS (40 mg ml⁻¹) was mixed with 200 µl thrombin; and (ii) 200,000 human fibroblasts in 200 µl of the HA-ADH (40 mg ml⁻¹) were mixed with 200 µl fibrinogen. A double-barrel syringe was used to mix the solutions and the formed gel was poured in a 48-well plate.

2.6. Gelation time of the dermal component

Equal volumes (200 µl) of the HA-CHO-GRGDS-thrombin and the HA-ADH-fibrinogen were mixed and stirred in a glass vial with a stirring bar until formation of a solid gel (the dermal component). The gelation time was defined as the time required to create the solid globule, which was completely separated from the bottom of three glass vials.

2.7. Degradation studies

Degradation studies were carried out by incubating four samples of the dermal hydrogel (after reaching the swelling equilibrium) in PBS, in the presence of 10 U ml⁻¹ hyaluronidase, in an orbital shaker at 37 °C. Samples were placed in transwells to facilitate handling. Every day, they were blotted dry and weighed, and the hyaluronidase solution was replaced. The percentage of weight loss was determined by dividing the measured weight at each time point (Wᵢ) by the initial weight after swelling to equilibrium in PBS (Wₒ); % weight = Wᵢ/Wₒ × 100. Scanning electron microscopy (SEM) images of the samples were obtained after freeze-drying.

2.8. SEM and pore size determination

The morphology of the freeze-dried samples was observed under a 5600LV scanning electron microscope (JEOL, Tokyo, Japan), after sputter-coating them with an ultrathin (10 nm) layer of gold using a Hummer 6.2 Sputtering System from Anatech Ltd (Hayward, CA, USA). The pore size was determined using the measure-length function in the AxioVision Software (Zeiss, Germany). When the pores were not exactly round, the length was measured as the greatest diameter in each pore.

2.9. Determination of the mechanical properties of the dermal component

The viscoelastic shear properties of the gels HAX-GRGDS, fibrin/ HAX-GRGDS and fibrin were measured at low frequencies using an AR-2000 rheometer (TA Instruments, Inc., New Castle, Delaware, USA). Samples were fully swollen in PBS prior to measurements. A plate-and-plate (parallel plate) geometry was used to apply oscillatory shear to hydrogel samples using a stainless steel plate (20 mm diameter) at 25 °C. Gel disks (1 ml total volume) were made in a 12-well plate and then cut with a 12 mm biopsy punch. The fully swollen gels were placed between the two plates so that a gap of 1000 or 1800 µm was maintained between the two plates. Strain sweep tests were done to ensure that the shear property measurements were done in the linear region of the stress–strain curve. The viscoelastic shear properties are independent of the strain applied in the linear region. A target shear strain value was identified by measuring the viscoelastic shear properties as a function of strain applied (0.6% strain was used to measure the shear properties). Measurements of the shear properties were then made by systematically varying the frequency from 1 to 10 Hz. The
2.10. Preparation of the epidermal component for keratinocytes’ culture

HA-CHO (40 mg ml\(^{-1}\) in PBS) and HA-ADH (40 mg ml\(^{-1}\) in PBS) were mixed with a PLL solution (1 mg ml\(^{-1}\)) at an experimentally optimized ratio of 2:2:1 and poured into a polytetrafluoroethylene (Teflon\(^{\circledR}\)) mold. Because HA is a polyanion and PLL is a polycation, its complexation, followed by the solvent evaporation at room temperature (RT), allowed the creation of a stable membrane. After drying, the membrane easily detached from the mold surface. For further surface modification with (FITC-labeled)-PLL, they were immersed in a solution of 11 mg ml\(^{-1}\) S-NHS, 50 mg ml\(^{-1}\) EDC-HCl and 5 mg ml\(^{-1}\) (FITC-labeled)-PLL, and left to react for 18 h. After thorough washing with PBS, a 8 mm diameter biopsy punch was used to create small membranes. For cell culture, these membranes were coated with laminin-5 (1 \(\mu\)g ml\(^{-1}\)) and left overnight in the humidified incubator. The membranes were placed in cell culture porous inserts. The next day, \(1 \times 10^5\) keratinocytes in 400 \(\mu\)l of CnT-57 medium were seeded into the membranes.

2.11. Force measurements of the epidermal component

Young’s modulus was measured using an atomic force microscope (Model MFP-3-D, Asylum Research, Santa Barbara, CA, USA) with an antimony-doped silicon cantilever (\(f_0 = 50–100\) kHz, \(k = 1–5\) N m\(^{-1}\)). Model FESP, Bruker AFM Probes, Camarillo, CA, USA). Data were collected and analyzed using a proprietary procedure running in Igor Pro software (WaveMetrics, Inc., Portland OR, USA). Hydrogel samples were clamped onto a glass slide and submerged in PBS. Force curves were collected in contact mode. Young’s modulus was calculated by fitting the linear portion of force curves with the Hertz model.

2.12. Adhesion studies

As a preliminary study to assess the adhesion between the epidermal and the dermal layer, 8 mg of the HA-CHO was reacted with 0.48 mg Alexa Fluor\(^{647}\) hydrazide in a PBS buffer for 4 h at RT. The HA-Alexa Fluor\(^{647}\) conjugate was then purified by dialysis (MW cutoff 30 kDa) for 2 days. To create a green fluorescent membrane, 30% PLL was replaced by FITC-labeled polymer to prepare the epidermal membrane.

In order to quantify the adhesion, a 12 mm biopsy punch was used to cut both the membrane and the dermal substitute. Membranes containing the PLL modification or not and the dermal substitutes were glued separately with Super Glue to 14 mm metal plates containing the PLL modification or not and the dermal substitute. Membranes were kept in contact with the dermal component for 10 min under a 1.3 N setting force in order to cure. The tissue–adhesive interface was displaced at a rate of 0.05 mm min\(^{-1}\) until complete separation occurred. The maximal force measured by the 20 N load cell prior to interface failure was recorded as the adhesion force of the tested material. To test if covalent bonding of aldehydes in the dermal component with amines of the epidermal component increased the force required to separate the two layers, we blocked aldehyde groups with adipic acid dihydrazide (5 mg ml\(^{-1}\)) for 15 min prior to the experiment.

2.13. alamarBlue\(^{\text{R}}\) assay

The alamarBlue\(^{\text{R}}\) proliferation assay was performed according to the manufacturer’s instructions [22]. Briefly, the stock solution was diluted in cell culture medium at a 1:10 ratio, then 1 ml of this solution was added to the scaffolds in a 48-well plate and incubated for 4 h at 37 °C in the dark. Next, 100 \(\mu\)l of this solution was transferred into a 96-well plate and the fluorescence was read at 600 nm using excitation at 570 nm. The background fluorescence was subtracted from all values.

2.14. DNA quantification

Cellular DNA was quantified using the PicoGreen\(^{\circledR}\) dsDNA kit, according to the manufacturer instructions [23]. The cell content was removed from the scaffolds by freezing them at −80 °C and subsequent sonication. The fluorescence of samples and standards was measured using 485 nm excitation light at an emission wavelength of 528 nm. The DNA concentration was extrapolated from a previously established standard curve.

2.15. LIVE/DEAD\(^{\circledR}\) assay

The LIVE/DEAD\(^{\circledR}\) cell viability kit for mammalian cells [24] was used to visualize cell viability after different periods of culture. Calcein-AM and ethidium homodimer-1 were dissolved in PBS at concentrations of 2 and 4 \(\mu\)M, respectively. Keratinocytes and fibroblast were incubated with this solution for 20 min. After washing twice with PBS, the fluorescence of the cells was observed using a Zeiss 710 confocal microscope (Germany).

2.16. Immunocytochemistry

For immunocytochemistry, cells were fixed overnight at 4 °C in 4% PFA dissolved in PBS. After washing twice with PBS, cells were permeabilized using 0.25% Triton\(^{\text{TM}}\) X-100. In order to block non-specific antibody binding, cells were incubated for 30 min at RT with 1% BSA in PBS. The BSA solution was removed and the cells were incubated in cytokeratin-14 (1:4000) overnight at 4 °C. After washing three times with PBS, the secondary antibody goat polyclonal secondary antibody to mouse IgG (H&L) (FITC) was added in the concentration 1:4000. After washing three times, the actin filaments were stained with phalloidin (1:200) for 20 min at RT and the cell nuclei were stained with DAPI (0.1 \(\mu\)g ml\(^{-1}\)) for 1 min, also at RT. Cells were then observed under a fluorescence microscope (Zeiss, Germany).

2.17. Histology

Samples with cells were fixed in 4% PFA overnight at 4 °C and left in 70% ethanol. Specimens were embedded in paraffin wax and sectioned into 6 \(\mu\)m sections, which were routinely processed for hematoxylin and eosin staining (H&E).

2.18. Data analysis

Experiments were performed using four samples per condition. Data are presented as mean ± standard deviations, with \(n = 4\) for each group, compared by one-way analysis of variance and Tukey’s post hoc multiple comparison test or by an unpaired \(t\)-test using GraphPad Prism 5\(^{\text{rd}}\) software (La Jolla, CA, USA).
3. Results and discussion

We have developed an epidermal–dermal skin substitute composed of (i) an in situ gelling dermal component, which adapts to the shape of the lesion, and (ii) an epidermal component, which anchors to and protects the dermal component. The dermal substitute contains human dermal fibroblasts three-dimensionally distributed in a fibrin/HAX-GRGDS gel. The epidermal substitute is a membrane composed of HAX and PLL, which anchors to the dermal component via aldehyde–amine crosslinking, forming a single composite structure (Fig. 1).

3.1. Dermal component

A composite hydrogel providing appropriate mechanical properties, protease-degradable elements and cell-binding ligands was designed to mimic the dynamic network of the dermal ECM, consisting of protein fibers and polysaccharides [25,26]. HA was chosen as the polymeric basis for the scaffold matrix because it is biodegradable, and promotes migration, differentiation and proliferation of fibroblasts and endothelial cells [27,28]. HA enhances angiogenesis and the production of ECM components during wound healing, supporting regeneration and the scarless healing of wounds [29,30]. Despite these useful properties, cells do not easily attach to HA, because of its hydrophilicity [31–33]. Conjugation of RGD peptides can improve cell adhesion to HA [34].

We modified the HA polymer for the dermal component with the fibronectin-derived peptide GRGDS [35–37] (Fig. 2A). The successful conjugation of the peptide sequence to the activated carboxylic acid of the aldehyde modified HA (HA-CHO, to be reacted with HA-ADH in order to form HAX) was confirmed by NMR (Fig. 2B) and by gel permeation chromatography (Fig. 2C). Comparison of the integrated 1H NMR signals of the methyl protons of HA-CHO (chemical shift ~1.8 ppm in NMR spectrum) with the methylene protons on the side chains of arginine (R) and aspartic acid (D) in the GRGDS peptide (chemical shift at ~2.6–2.8 ppm in spectrum) showed that the degree of HA carboxylic acid modification with the peptide was approximately 10%. The modification of HA-CHO with GRGDS decreased its retention time on GPC, indicating that its molecular weight was increased (Fig. 2C). The peak did not broaden and there were no detectable new peaks with shorter retention times, suggesting that the dispersity of the polymer did not change significantly and that no detectable amounts of high-molecular-weight cross-linked polymer products resulted from the conjugation reaction.

HA was also modified with adipic hydrazide (HA-ADH), to allow in situ cross-linking with HA-CHO (forming cross-linked HA, HAX) upon application with a double-barrel syringe. Both HA-CHO and HA-ADH were modified using established protocols [38–40]. The degree of ADH incorporation in HA was verified by 1H NMR spectroscopy and the percentage of oxidation of HA was quantified by measuring the number of aldehyde groups in the polymer using t-butyl carbazate [20,41,42].

Fibrin (formed from the reaction of fibrinogen with thrombin) was incorporated into the dermal component to confer protease degradability [43,44] and to modulate gel stiffness in order to facilitate cell penetration [45,46]. Solutions of fibrinogen/HA-ADH (1:1 by volume) were mixed with thrombin/HA-CHO-GRGDS (1:1 by volume). Upon mixing, the two solutions formed a homogeneous cross-linked hydrogel (fibrin/HAX-GRGDS, the dermal component), with a gelation time of 33 ± 3 s. The fibrin/HAX-GRGDS gel adopted the shape of the mold into which it was cast (Fig. 3A and B); by

![Fig. 2. Peptide conjugation to HA-CHO. (A) Chemical structure of HA-CHO, the fibronectin-derived peptide sequence, GRGDS, and the peptide-modified HA-CHO-GRGDS (‘ denotes methylene protons in the side chains of arginine and aspartate in the GRGDS peptide, corresponding to the asterisked peak at ~2.6–2.8 ppm in panel B; § denotes the methyl protons of HA-CHO at 1.8 ppm). (B) 1H-NMR spectra showing that approximately 10% the available carboxylic acids in HA were modified with the peptide (+ indicates the conjugated peptide). (C) GPC showing an increase in molecular weight of the HA-CHO-GRGDS conjugate relative to the molecular weight of HA-CHO.](image-url)
The fibrin/HAX-GRGDS gel had a reduced stiffness and brittleness compared to the cross-linked gel (HAX). Mechanical studies of the fully swollen gels allowed the calculation of the shear modulus (\(G\)) as 2413 ± 399 Pa for HAX-GRGDS, 694 ± 93 Pa for fibrin/HAX-GRGDS and 196 ± 34 Pa for fibrin. \(G\) has two components – storage (elastic) shear modulus \((G_0)\) and loss (viscous) shear modulus \((G_00)\) – and is defined by Eq. (1):

\[
G = \sqrt{G_0^2 + G_00^2}
\]

The \(G\) of fully swollen HAX-GRGDS-, fibrin/HAX-GRGDS- and fibrin hydrogels was measured at 10 Hz, giving values of 2384 ± 404 Pa for HAX-GRGDS, 694 ± 93 Pa for fibrin/HAX-GRGDS and 193 ± 35 Pa for fibrin. It has been reported that the matrix can act as a barrier to cells in 3-D culture at \(G_0\) higher than 1200 Pa, even in the presence of protease-degradable elements or cell-integrin binding sites [47]. The higher the \(G_0\), the more difficult it is for fibroblasts to spread, proliferate and migrate [47]. \(G\) can be correlated with Young’s modulus according to Eq. (2) [48]:

\[
E = 2 \times G \times (1 + \nu)
\]
in which \(E\) is Young's modulus, \(G\) is the shear modulus and \(\nu\) is Poisson’s ratio. A rough estimate of \(E\) may be obtained from \(G\) by assuming a Poisson’s ratio of 0.5 for a fully swollen hydrogel, such as the ones reported here [49]. The calculated values of \(E\) for HAX-GRGDS, fibrin/HAX-GRGDS and fibrin were 7239 ± 1197, 2083 ± 279 and 587 ± 103 Pa, respectively. The values of \(E\) obtained for both the fibrin/HAX-GRGDS and the fibrin hydrogel are within the range of values for soft tissues in the human body [50]. The reduced stiffness

Fig. 3. Dermal component. (A, B) The dermal component maintains the shape of the mold in which it was cast. (C, D) Viscoelastic shear properties of the different hydrogels. (C) Elastic shear properties obtained by varying the frequency from 1 to 10 Hz. (D) The elastic shear modulus (\(G_0\)) at 10 Hz. Data are means ± standard deviations, \(n = 4\) for each group, compared by an unpaired t-test (**\(p < 0.0001\)).
after the incorporation of fibrin into HAX-GRDS hydrogel may help cells to displace polymer chains and make room for their movement [51]. The fibrin gels were the softest, and were not elastic or stiff enough to maintain their form during oscillatory shear mechanical testing. In fact, low mechanical stiffness has been a limiting factor for the use of scaffolds based solely on fibrin and is a major reason for its frequent combination with other scaffold materials [52].

Fibrin/HAX-GRGDS scaffolds with a diameter of 10 mm and a thickness of 5 mm were prepared, containing 200,000 human dermal fibroblasts per scaffold. Cells were suspended in the fibrinogen/HA-ADH prior to mixing with thrombin/HA-CHO-GRGDS (1:1 by volume) to assure the homogeneous distribution of the cells within the scaffold. The cells showed continuous proliferation over 9 days, as assessed by the alamarBlue™ assay [22] (Fig. 4A) and by measuring the increase in the double-stranded DNA content [23] (Fig. 4B). LIVE/DEAD® staining and subsequent fluorescence microscopy demonstrated that the fibroblasts were able to grow three-dimensionally throughout the scaffold. Moreover, the negligible number of dead cells indicated that the material had minimal toxic effects on the cells. Twenty-four hours after seeding (day 1, Fig. 4C), cells were alive and spherical; by day 3, they showed the characteristic spindle shape of dermal fibroblasts (Fig. 4D). On days 6 (Fig. 4E) and 9 (Fig. 4F), fibroblasts had proliferated and spread extensively. Photomicrographs of the mid-portions of H&E-stained horizontal sections of the dermal component confirmed that the fibroblasts were distributed throughout (Fig. A1). Cells cultured in HAX or fibrin/HAX hydrogels without the GRGDS modification resulted in comparable numbers of calcein-stained viable cells per scaffold (Fig. A2A and B), but the cells did not adopt the characteristic spindle shape of fibroblasts. Instead, fibroblasts

![Figure 4](image_url)

Fig. 4. Cell proliferation in the dermal substitute. (A) alamarBlue® fluorescence over time. (B) dsDNA concentration over time. Data are means ± standard deviations, n = 4 for each condition, compared by an unpaired t-test (**p < 0.0001). (C–F) Confocal fluorescence images of dermal fibroblasts growing in the dermal gel component at various time points. Green (calcein-AM) and red (propidium iodine) stained cells are viable and dead, respectively.
adopted a rounded shape and tended to form cell aggregates. In HAX-GRGDS gels (in the absence of fibrin), only sparse rounded cells were observed (Fig. A2C), despite the presence of cell attachment ligands. Previous reports [34,53] suggest that RGD-based cell attachment ligands, protease-degradable elements and adequate matrix stiffness all contribute to morphological changes, such as acquiring a spindle shape and increased cell surface area [47]. Our findings are consistent with this view. Studies of degradation in hyaluronidase showed that the hydrogel degraded over 11 days (Fig. A3A–O).

3.2. Epidermal component

The epidermal component was designed to deliver epidermal keratinocytes to the wound site, allowing rapid re-epithelialization of a full-thickness skin defect and protecting the dermal layer from dehydration, mechanical disruption and infection. Dermal–epidermal interactions promote the proliferation of and the re-epithelialization by keratinocytes [4]. Membranes (HAX-PLL) were obtained by mixing 1 ml of PLL (1 mg ml\(^{-1}\)) into 2 ml of HA-CHO (40 mg ml\(^{-1}\)) and then adding 2 ml of HA-ADH (40 mg ml\(^{-1}\)). Hydrogel mixtures were left in polytetrafluoroethylene (Teflon) molds overnight and were then cut into 8 mm diameter discs (Fig. 5A). As shown by nanoindentation studies, the addition of PLL significantly increased the membranes’ Young’s moduli (E), making them stiffer (Fig. 5B). Free-standing membranes of HA (containing negatively charge carboxylic acids) and PLL (containing negatively charged amines) have been produced by electrostatic interaction between those polyelectrolytes [54]. To facilitate keratinocyte attachment, one surface of the HA-PLL membrane was coated with the most abundant component of the basement membrane, the protein laminin-5 [55,56]. Membranes without that coating showed very limited cell attachment (data not shown). Keratinocytes on the laminin-coated membranes attached and proliferated slowly, as assessed by the alamarBlue\(^{®}\) assay (Fig. 6A), for the culture times of 1, 3 and 6 days. Fluorescence imaging of LIVE/DEAD\(^{®}\) stained cells on those membranes showed that cells attached and formed typical colonies (Fig. 6B) [57]. Confocal images showed that keratinocytes expressed cytokeratin-14 (Fig. 6C), a keratin of the basal cells of all stratified squamous epithelia [58], indicating that the keratinocytes were in an early stage of differentiation, suitable for transplantation.

3.3. Composite bilayer

To form a bilayer composite, the epidermal component was placed on top of the dermal matrix immediately after its gelation. The keratinocytes are only seeded on the top of the epidermal component. The free aldehyde groups of the dermal hydrogel were intended to react covalently with amines of the PLL-modified epidermal HA membrane layer. This chemistry has been applied to create glues which bind to tissue amines in situ [59,60] or to cross-link cells with an aldehyde surface modification to amines on unmodified cells [61]. A piece of the composite with the approximate dimensions of 3 mm \(\times\) 5 mm \(\times\) 5 mm (H \(\times\) L \(\times\) W) was cut and imaged with the confocal microscope. Z-stacks performed at different YZ-positions of the sample showed a close apposition of the two layers (i.e. the epidermal layer containing FITC-PLL (blue) placed on the dermal component containing HA-CHO covalently labeled with Alexa Fluor\(^{®}\)–647 (purple); see Section 2) (Fig. 7A).
SEM of the composite structure showed a construct composed of two layers: a dense epidermal HAX-PLL membrane on top of a porous dermal scaffold (Fig. 7B). The small pore size (17.58 ± 6.49 μm) and flat surface of the epidermal component was designed to allow the formation of a cell monolayer with no cellular ingrowth, while allowing the diffusion of small molecules. The considerably bigger pores (177.49 ± 93.03 μm) of the dermal layer as well as the admixture of proteolytically degradable fibrin were designed to allow dermal fibroblasts to spread into the scaffold in three dimensions (Fig. 4C–F).

Mechanical testing (Fig. 7C) showed that a maximal force of 0.094 ± 0.006 N was necessary to detach the epidermal membrane made of HA and PLL from the dermal substitute, whereas only 0.036 ± 0.001 N was required for an epidermal membrane made of HA with no free amines. Capping of the free aldehydes in the dermal component with adipic acid dihydrazide prior to the mechanical testing resulted in values (0.021 ± 0.007 N) similar to those obtained with the membrane lacking free amines. These results suggest that the amine–aldehyde reaction created strong imine bonds between the two parts of the composite scaffold. This chemistry has been used to crosslink cells with an aldehyde surface modification to amines on unmodified cells [61], to create glues which bind to tissue amines in situ [20,21] and to enable in situ crosslinking hydrogels to be used in the peritoneum, without any toxic effects [40,62,63]. These tissue glues based on an aldehyde-modified dextran which reacts with free amines on the cell surface have approximately twice the adhesion strength of our system [64]. This may be because some of the aldehyde groups in our dermal system have reacted with the hydrazide-modified HA to form HAX-RGDS and are not available for reaction with the PLL amines of the epidermal compartment.

Our approach offers a number of advantages over the current available skin substitutes: it uses materials that are approved for other applications by the Food and Drug Administration; it can be produced at an adequate cost and by reproducible methods; and it promotes angiogenesis (fibrin [15–17] and hyaluronic acid [18]).

4. Conclusion

We have developed a composite scaffold that combines a fibroblast-containing dermal matrix with a keratinocyte-containing epidermal membrane, linked together by amine–aldehyde interactions. Due to its in situ cross-linking ability, the dermal gel component is easy to apply and will conform to the shape of any lesion. The dermal component has the appropriate mechanical properties, cell adhesion sites and protease-degradable elements to allow the tridimensional spreading of human fibroblasts, forming a dermal matrix. The epidermal component is robust and allows the creation of a monolayer of keratinocytes. It will protect the dermal matrix from dehydration and infection. The composite bilayer described here holds potential as a skin replacement product that would allow establishment of both skin layers in a single procedure.

Notes

The authors declare no competing financial interest.

Acknowledgements

D.S.K. acknowledges funding from the Biotechnology Research Endowment from the Department of Anesthesiology at Boston Children’s Hospital. I.P.M. acknowledges the Portuguese Foundation for Science and Technology for the grant BD/39396/2007 and the MIT-Portugal Program. D.G. acknowledges the Swiss National Science Foundation for a post-doctoral fellowship (PBGEP3-129111). B.P.T. acknowledges an NIH Ruth L. Kirschstein National Research Service Award (F32GM096546).
Appendix B. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.actbio.2014.08.029.

References

