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Abstract

Empirical studies of labor markets show that social contacts are
an important source of job-related information. At the same time,
wage differences among workers may be explained only in part by
differences in individual background characteristics. Such findings
motivate our model in which differences in “social connectedness”
among otherwise identical workers result in wage inequality and
differences in unemployment rates.

The model of this paper allows for heterogeneity in the number
of connections among workers within the Pissarides model of labor
market turnover. The paper derives conditions for which a unique
labor market equilibrium exists. It also shows that such heterogeneity
has important consequences. Workers with more connections both
receive a higher wage and face a lower rate of unemployment at
equilibrium. For the specific cases in which connections follow Poisson
and negative binomial distributions our numerical results show that
variability in connections can produce substantial variation in labor
market outcomes.

One lesson from the computational analysis is that (changes in) the
social structure sometimes affect labor market outcomes in nontrivial
ways. For example, when society becomes more connected, the average
unemployment level falls but the unemployment rate of workers with
few connections rises.
JEL classification: D83, J31, J64
Keywords: job search, social networks, arbitrary degree distribution,
wage inequality, incidence of unemployment
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1 Introduction

Empirical studies of labor markets show that social contacts are an

important source of job-related information [Ioannides and Loury (2004)].

At the same time, wage differences among workers may be explained only in

part by differences in individual background characteristics. Such findings

motivate our model in which differences in “social connectedness” among

otherwise identical workers result in wage inequality and differences in

unemployment rates.

The importance of social networks for finding jobs has been recognized

by the economics literature at least since the pioneering work of Rees and

Schultz et al. (1970), also summarized in Rees (1966), and by the sociology

literature at least since Granovetter (1973, 1995). More recently, formal

models have been developed that aim at illuminating relationships between

network formation, social network structure, and the workings of the labor

market. Empirical evidence shows that two-thirds of overall wage variation

remains unexplained, after the effects of individual characteristics such as

gender, education and age have been accounted for [Katz and Autor (1999)].

In the U.S., the increase in wage inequality in the 1980s and 1990s is to a

significant extent attributable to increase in residual inequality. The residual

(or within-group) inequality is often attributed to search frictions, which are

present over and above such factors as heterogeneity in worker productivity

and firm heterogeneity [Postel-Vinay and Robin (2002)]. Search frictions

in the form of different arrival rates of job offers across workers may cause

otherwise identical workers to earn different wages. Dispersion in arrival

rates of job offers underscores the importance of social networks in job

matching: heterogeneity in social network characteristics implies dispersion
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in wages [Mortensen (2003)].1

Empirical evidence on the types of jobs people find through “informal”

information networks, such as referrals or information transmission from

friends and relatives as opposed to such “formal” channels as newspaper job

listings and employment agencies is mixed, in spite of the conjectures made

by Rees (1996). See Ioannides and Loury (2004). The empirical literature

on the role of social contacts in the labor market does not clarify why some

demographic groups rely more on informal methods than others, nor why

the pattern of employment and earnings payoffs to networks varies across

groups. Employers differ with respect to the types of information they need

prior to hiring decisions, workers differ in observable and unobservable ways,

and social contacts may serve as channels for different types of information

depending upon the context in which they are used.

A noteworthy theoretical study by Mortensen and Vishwanath (1994)

characterizes wage dispersion as an outcome of worker random search, when

workers sometimes receive offers directly from employers and other times

through referrals from their social contacts who are employed. Since workers

accept employment only if they receive sufficiently attractive offers, the wage

distribution of employed workers stochastically dominates the distribution

of wage offers that are received directly from employers. More recently,

studies have appeared that model social networks explicitly and aim at

understanding interrelationships between network formation, social network

structure, and the labor market operation. Jackson (2005) makes a useful
1Bowlus (1997) finds evidence that differences in search behavior explains 20%-30% of

the male-female wage differential. Related is the paper by Borghans et al. (2005) who
argue that the increased importance of interpersonal interactions in the workplace might
explain the observed decline in wage differentials between males and females, because the
women’s share of employment is higher in occupations where interpersonal interactions
are more important.

4



distinction between models of social network formation that are based on

random graphs and models that are based on game-theoretic modelling.

Works by Calvó-Armengol (2004), for which Boorman (1975) is an important

antecedent, and Calvó-Armengol and Jackson (2004) have shown that social

networks may explain such salient characteristics of the labor market as

positive correlation of employment across individuals and time, and duration

dependence in the likelihood of obtaining a job.

Several other studies that model the labor market effects of explicit

networks are worth mentioning. Arrow and Borzekowski (2004) emphasize

links between workers and firms and do not deal with connections between

workers. Wage inequality in their model results from workers’ having

different productivity in different firms. Their simulations show that 15%

of the unexplained variation in wages may be explained by the number of

ties between firms and workers. Another study, Francois Fontaine (2005),

uses simulation to explain wage differentials between otherwise identical

workers. The economy is divided into many complete social networks within

which employed and unemployed workers search with different intensities.

Bentolila, Michelacci and Suarez (2004) develop a matching model in the

style of Pissarides (2000) that introduces an explicit tradeoff between a

productivity advantage in the “formal” economy, on one hand, and the

effect of social connections in shortening unemployment spells at the cost

of a lower wage rate, on the other. This implies market segmentation with

lower wages associated with jobs found through social contacts that the

authors claim facilitate occupational mismatch. They use United States

and European Union data to show that there exists a wage discount of 3%

to 5% for jobs found through personal contacts (defined as having found

jobs through family, friends and other contacts) and not directly via the
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employer, nor by means of advertisements nor via employment agencies).

Their regressions control for industries and occupations, and for measures

of cognitive ability and own demographic characteristics. Pellizzari (2004)

also finds that workers who find jobs through informal contacts are paid

less than those who are recruited through formal recruiting activities. One

possible explanation for such findings is, of course, that employment services

may come with considerable expertise of experienced employment councilors

[c.f. Rees (1966).]

These models however, do not model explicitly the underlying pattern

of social ties among individuals — the social structure. As a consequence,

they cannot allow for competition over job information among workers who

share social contacts, nor do they take into account salient characteristics of

real-life networks, such as high clustering and scale free degree distributions.

In view of recent developments in the formal modelling of social networks,

both within the economics literature and in computer science and statistical

physics2, a reconsideration of the literature on social networks and labor

markets seems appropriate. However, as Jackson (2005) notes, these models

in general do not offer predictions concerning network characteristics like

specific degree distributions that are likely to emerge. An advantage of

random graph models is that they may relate observed characteristics of a

network to specific underlying degree distributions.

In this paper, we reconsider this literature by studying the stochastic

properties of a generic model in the style of the popular Pissarides model

of labor market adjustment [Pissarides (2000)], in which we embed a

social network model. We do so by allowing the number of connections

by each worker to vary randomly according to an arbitrary distribution.
2See Jackson (2005) for further discussion and references.
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Consequently, workers who are members of the same social network may

differ with respect to how many other workers they are directly connected

with. Our model allows us to examine the relationship between the degree

distribution of connections, on one hand, and wage dispersion and differences

in unemployment, on the other, by assuming that workers are identical

except for their degree. Our results are in broad agreement with casual

empiricism that workers with more social contacts are on average more likely

to be employed and be better paid when employed. So, the heterogeneity

we introduce has important consequences in the model. Our explanation

for such outcomes is that more social contacts provide individuals with

better outside options in the wage-bargaining process between workers and

prospective employers.

We build on recent work by Calvó-Armengol and Zenou (2005) which

itself originates in the Pissarides model of labor market adjustment

[Pissarides, op. cit.]. Calvó-Armengol and Zenou study the effects of social

networks on job matching through word-of-mouth communication. In their

model, the number of direct links each worker has with others, which is

also known as network size, is assumed to be constant. They show that

job matches initially increase with the number of links each workers has

with others, as unemployed workers hear about more vacancies. However,

when network size exceeds a critical value, the number of job matches starts

decreasing: unemployed job seekers start receiving multiple announcements

of the same vacancies, and consequently, coordination failures set in.

We extend the model by allowing for heterogeneity in the number of

links that workers have with others. In order to do so, we apply results from

a well established technical literature that studies the properties of random

graphs with arbitrary degree distributions (Newman, 2003a). Introducing
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heterogeneity in the number of contacts adds realism to the model and allows

studying the extent to which differences in connectedness implies differences

in wages and in the incidence of unemployment among individuals. We

find that, on average, better connected (in the sense of having a greater

number of direct links with others) workers both receive higher wages and

face lower rates of unemployment. Our numerical results show that, in

contrast to Calvó-Armengol and Zenou, op. cit., the number of job matches

increases monotonically with the average number of connections in the

network. This is a desirable addition to the properties of the matching

function. We note that in the literature so far there exists only few cases

of microfoundations of the Pissarides matching function [Lagos (2000)].

Therefore, in a sense, by allowing for heterogeneity of links, the paper

contributes to the microfoundations of the Pissarides matching function.

The remainder of the paper proceeds as follows. Section 2 presents first

the key components of Calvó-Armengol and Zenou (CAZ), op. cit., and then

subsection 3 introduces our extension. Section 4 contains the result on the

existence and uniqueness of the labor market equilibrium. Section 5 derives

results for wage inequality and unemployment incidence for the specific cases

of Poisson and negative binomial degree distributions. Section 6 concludes.

2 Job Matching in a Social Network

Starting from Pissarides (2000) but departing from it as in Calvó-Armengol

and Zenou (2005), we consider a large number of workers who are ex ante

identical with respect to job performance. We also assume that firms, which

coincide with jobs in the Pissarides model, are homogeneous. The job arrival

and break-up process is as in Pissarides, op. cit.: at the beginning of each
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discrete-time period t, each worker receives information about a job opening

directly from an employer with probability vt; each employed worker loses

his job at the end of the period with probability δ. Let the unemployment

and employment rates as of the end of period t be denoted by ut and

1 − ut, respectively. If a worker happens to be already employed when

job opening information arrives, she passes it on to one of her unemployed

acquaintances, randomly selected among them. If none of her acquaintances

are unemployed, the job opening information is lost. Newly employed

workers go through a one-period long probationary stage, during which their

earnings are equal to y0, which without loss of generality is set equal to 0.

In the following period, workers’ productivity becomes y1 > 0 and stays at

that level for as long as employment continues. This assumption ensures

that newly employed workers have no incentive to use new job openings to

increase their current wage.

Workers are embedded in an exogenously given social network, where

each worker is assumed to be in direct contact with k other workers in each

period. The parameter k gives the network size. We retain for the moment

the assumption in Calvó-Armengol and Zenou, op cit. that at the beginning

of every period, each worker draws k contacts at random from the entire

population of workers. Thus, on average, a worker has utk unemployed and

(1− ut)k employed contacts.

2.1 Receiving job openings through contacts

Let P be the probability that an unemployed worker receives information

about a job opening from at least one of her social contacts. We adopt

from ibid. an expression for the probability that a worker hears of a

vacancy from her social contacts, as a function of network size, and of
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the unemployment and vacancy rates, P (k, u, v), where we suppress, for

simplicity, time dependence when no confusion arises. This probability is

equal to 1 minus the probability that a worker does not receive any job

opening information through her k social contacts. We consider first the

probability that a worker i who is unemployed receives information about a

job opening from worker j, one of her direct contacts. This is equal to the

joint probability that worker j is employed and receives directly a job offer

from an employer, (1−u)v, times the probability that she transmits the job

opening information to worker i, which is equal to3

k−1∑

m=0

(
k − 1

m

)
1

m + 1
(1− u)k−m−1um =

1− (1− u)k

uk
. (1)

The summand in the left-hand side of the equation above is the probability

that for worker j, m of her k − 1 other contacts are unemployed,
(
k−1
m

)
(1−

u)k−m−1um, multiplied by the probability that worker i receives the job

opening information, conditional on worker j’s having m other unemployed

contacts (1/(m + 1)). Summation is then over all possible values of

m, m = 0, . . . , k − 1.

Thus, the probability that worker i does not receive job opening

information from another worker j is equal to 1 − v(1 − u)1−(1−u)k

uk . It

thus follows that P (s, u, v), the probability for worker i to receive job

information from at least one of her k contacts is given by: P (s, u, v) =

1−
[
1− v(1− u)1−(1−u)s

us

]s
. Calvó-Armengol and Zenou show that as s, s ∈

[0, n − 1], increases P (s, u, v) increases initially until it reaches a unique

maximum at k̄, and decreases thereafter on [k̄, n−1]. The economic intuition

for this finding is that increasing network size makes coordination failures

more likely. Although unemployed workers receive on average more job
3See Calvó-Armengol (2004).
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openings through their social network as network size increases, information

about vacancies may be wasted as it becomes more likely that an unemployed

worker receives multiple notifications of the same vacancy. An unemployed

worker may get a job in a particular period, either because she receives job

offer directly from an employer or indirectly via one of her social contacts.

These events are mutually exclusive, therefore the probability of becoming

employed is:

h(k, u, v) = v + (1− v)P (k, u, v). (2)

The Pissarides matching function may be suitably adapted when workers

receive information about jobs directly from employers and via the social

network. The rate at which job matches occur per unit of time is uh(k, u, v) :

m(k, u, v) = uh(k, u, v) = u[v + (1− v)P (k, u, v)]. (3)

The individual probability f(k, u, v) for a firm to fill a vacancy is:

f(k, u, v) =
m(k, u, v)

v
= u

[
1−

(
1− 1

v

)
P (k, u, v)

]
. (4)

2.2 Wages

The model is closed by assuming that the wage rate is determined from

a Nash bargain between a firm and a prospective employee over the total

intertemporal surplus between the firm and the worker. If β, 0 ≤ β ≤ 1

denotes the bargaining power of workers, γ the search cost of the firm per

unit of time, and y1 the long-term output of a worker, then the worker

receives a share β of the joint surplus:

w1 = β
(
y1 + γ

v

u

)
. (5)

In equilibrium, w1 depends on network size via the equilibrium values of the

unemployment and vacancy rates.
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3 Heterogeneity in the number of connections

Next we depart from the previous literature by extending the model to allow

workers to differ with respect to the number of social contacts they have

with others. Let pk, k = 0, 1, . . . , denote the probability that the typical

worker will be connected with k other workers. We refer to this as the

degree distribution p = (p0, p1, . . . , pk, . . .), that replaces k as the descriptor

of network size in the remainder of the paper.

We assume that contacts are established in our model at the first stage

of a two-stage game. Job matching takes place at a second stage. In the first

stage, nature decides how many contacts workers have with other workers.

How could this matching process be visualized? Think of a sequence,

ki, i = 1, . . . , k, for the number of other workers each worker i is connected

with, or in terms of graph-theoretic terminology, of the degrees of the nodes

of the social network. Suppose that each of these numbers given the number

of stubs sticking out of each node i, which are the ends of “edges-to-be,” in

the social network. Then pairs of stubs are chosen at random and connected.

Molloy and Reed (1995) have demonstrated that this process may generate

every possible topology of a graph with a given degree sequence with equal

probability.4

A property of this model is noteworthy. The probability that the number

of other workers that a particular worker, whom we reach by following

a randomly chosen link of a given worker, is connected with is equal to

k is not pk. Why this is so is clarified by the following: a worker with
4The configuration model is defined as the ensemble of graphs so produced, with each

graph having equal weight. That is, each possible graph can be generated in
Q

ki! ways,
since the stubs around each node are indistinguishable. This factor is constant at a given
degree sequence and hence each graph appears with equal probability [Newman (2003a),
fn. 20, pg. 22].
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m other contacts is m times more likely to be reached than for a worker

with one contact. So, the degree distribution of a worker thus chosen

is proportional to kpk [Newman (2003b)]. For every worker, a randomly

chosen link connects to another worker with k contacts with probability

of fk ≡ kpkP
j jpj

. This connection bias is conceptually akin to length-biased

sampling in unemployment statistics.

Two remarks are in order at this point. First, we do not allow for

assortative matching (or mixing). That is, well connected individuals are

not more likely to be connected to others who are also well connected. We

leave assortative matching as an extension for future research. Note that this

does not conflict with the presence of connection bias, as discussed above.

Second, we assume that the probability for a worker to receive information

about a job opening directly from an employer, which is equal to the vacancy

rate vt, is independent of the number of the worker’s social contacts. That

is, firms advertisements of their openings are independent of workers’ social

networks.

3.1 Information on job openings through social contacts

In obtaining an expression for the probability that a worker i with, say

λ links, receives at least one job opening through her direct contacts, we

have to account for the connection bias discussed above. From this and

(1), it follows that the probability that a randomly chosen social contact j

transmits job opening information to worker i is given by

∑

k=1

Prob(j has k contacts and is employed|j receives job opening information)×

P (job opening transmitted to i|j has k contacts, is employed and receives job opening )
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=
∑

k=1

(1− ū)kpk∑
j jpj

[
1− (1− ū)k

ūk

]
=

1− ū

ūE(k)

[
1− p0 −

L−1∑

k=1

pk(1− ū)k

]
.

That is:

q(ū,p) =
1− ū

ūE(k)

[
1−E(1− ū)k

]
, (6)

where ū ≡ ∑
k pkuk denotes the average unemployment level in the network.

This definition presumes that the typical individual i who does not know

the number of other social contacts each of her own contacts has, expects

that the probability that her direct contacts’ other contacts be unemployed

is equal to average probability of unemployment in the economy at the

respective period of time, ū. At equilibrium, as we see further below, a

worker’s expected unemployment probability depends on her own number

of social contacts. We note that the above computed probability depends on

the degree distribution through its mean and through the term Ek(1− ū)k.

The probability P (λ, ū, v,p) that a worker with λ contacts receives at least

one job opening through his social contacts is now given by

P (λ, ū, v,p) = 1− [1− vq(ū,p)]λ . (7)

The above derivation depends on a simplification in that it does not

allow for the probability for a contact j to be unemployed to depend on the

number of links she has with others, that is, uj 6= ū. For that more general

case, it is straightforward to derive the counterpart of Equ. (6), under the

assumption that the variation in the unemployment rate of the contacts of

one’s contacts may be ignored:

q̃(ū,p,u) =
1

ūE(k)
Ek

{
(1− uk)

[
1− (1− ū)k

]}
, (8)

where u = (u0, u1, . . .). We note that the difference between q(ū,p) and

q̃(ū,p,u) is formally the covariance between a worker’s employment rate
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and
[
1− (1− ū)k

]
, the probability that at least one of her acquaintances

be unemployed. The larger this covariance, the higher the probability that

an individual would hear from her social contacts about job openings. The

higher the mean unemployment rate, the less important is the effect from the

contacts of one’s contacts, because they themselves are more likely to need

the information. How important is this generalization? A numerical example

helps. Let p1 = 0.99 and u1 = 0.9, p2 = 0.01 and u2 = 0. The average

unemployment rate is ū = 0.891. The probability that a randomly chosen

social contact transmits job opening information to a worker i is q = 0.1080

and q∗ = 0.1090, respectively. Intuitively, neglecting a likely negative

correlation between number of contacts and unemployment understates the

effect from expected unemployment rates of one’s contacts.

With assortative matching this difference would likely matter more, since

in that case, workers with more contacts enjoy the additional advantage

from a higher probability of being linked with other better connected

workers who are more likely to be employed themselves and therefore less

needy of information about job openings. In our model, heterogeneity

between workers is restricted to the fact that someone with more contacts

may avail of more draws from the probability distribution f . The less

actual unemployment rates differ among workers, the more innocuous this

assumption is.

Our analysis so far assumes that job information is private. However,

one may think of social settings where it might be difficult to conceal this

information from the acquaintances of one’s acquaintances. In such cases,

information about a vacancy spreads throughout the social group that is

defined as those agents who are directly or indirectly linked. In graph-

theoretic terms, they form connected components of the random network.
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The size distribution of these components is fairly well understood from

random graph theory. See Newman, op. cit.. A more precise model is

needed to describe how the access to the respective job opening is rationed.

The properties of the probability P (λ, ū, v,p) that a worker with λ

contacts receives at least one job opening through her social contacts are

summarized in the proposition that follows. Proofs of this and all other

propositions may be found in the appendix.

Proposition 1 The properties of P (λ, ū, v,p), the probability that a worker

with λ contacts receives at least one job opening through his social contacts,

are as follows:

(a) P (·, ū, v,p) is increasing and concave with respect to λ.

(b) P (λ, ·, v,p) is decreasing in ū. Let λ ≡ 1+2(1− p0− p1)E(k)/(v(p0−
1)2). Whenever λ < λ, P (λ, ·, v,p) is strictly convex on [ũ, 1] for some

0 ≤ ũ < 1.

(c) P (λ, ū, v,p) is increasing and concave in v. If λ > 1, P (λ, ū, v,p) is

strictly concave in v.

Property a states that a worker’s probability of receiving indirect job

offers increases with the number of contacts she has and that the marginal

benefit of adding a contact decreases with the number of links already

established. Property b says that the probability decreases with the average

unemployment rate in the economy. Calvó-Armengol and Zenou show

that there always exists a ũ ∈ [0, 1] such that P (·) is convex on [ũ, 1]. In

contrast, with heterogeneity in the number of links, whether a segment of

P (·) is convex with respect to ū depends on whether one’s own number of
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contacts does not exceed a threshold value λ. This threshold increases with

the expected degree of links in the entire economy. Property c shows that

the probability of receiving information about job openings through social

contacts increases with the vacancy rate. Heterogeneity in the number of

contacts makes the setting too general to allow us to derive a result like the

non-monotonicity that Calvó-Armengol and Zenou emphasize.

3.2 The matching function

The number of job matches per unit of time when the number of contacts

workers have with others, is no longer deterministic. It is therefore

appropriate to define the matching function as the expected probability

that a worker hears of a vacancy:

m(u, v,p) =
L−1∑

λ=0

pλuλ[v + (1− v)P (λ, ū, v,p)]. (9)

The rate at which vacancies are filled is given by:

`(u, v,p) =
m(u, v,p)

v
=

L−1∑

λ=0

pλuλ

[
1−

(
1− 1

v

)
P (λ, ū, v,p)

]

=
1
v

L−1∑

λ=0

pλuλh(λ, ū, v,p), (10)

where h(λ, ū, v,p) ≡ v+(1−v)P (λ, ū, v,p), stands for the probability that an

unemployed worker with λ contacts hears of a vacancy. It is straightforward

to establish the following.

Proposition 2 gives the properties of this matching function.

Proposition 2 The properties of the matching function m(u, v,p) are:

(a) m(u, v,p) is increasing in uλ for all λ ∈ {0, 1, . . . , L− 1};

17



(b) m(u, v,p) is increasing and strictly concave in v.

We note that establishing properties of the matching function is a

welcome addition to the literature on the microfoundation of the Pissarides

matching function [c.f. Lagos (2000)].

4 Labor Market Equilibrium

We recall the basic features of the Pissarides model: firms are identical and

offer identical jobs. They open up vacancies incurring a search cost γ per

unit of time. Workers are also identical with respect to productivity, but

do differ, in our model, with respect to the number of connections. Workers

go through a probationary period, in which there productivity is equal to

y0. The production of a long-term employed worker equals y1 > 0. Unfilled

vacancies do not result in production. Let wλ
1 denote the wage paid by firms

to workers with λ contacts after their first period of employment, and r is

the discount rate. In each period, matching between unemployed workers

and unfilled vacancies, described by Equ. (9), depends on the vacancy rate,

on the unemployment rates for workers with different number of contacts,

and on the properties of the social network, as summarized by the degree

distribution p.

We denote by Iλ
F,t and IV,t the expected intertemporal profit of a job

employing a worker with λ contacts, and of a vacancy at the beginning of

period t. The Bellman equations are straightforward to obtain:

Iλ
F,t = y1 − wλ

1 +
1

1 + r

[
(1− δ)Iλ

F,t+1 + δIV,t+1

]
, ∀λ. (11)

IV,t = −γ − 1− `(ut−1, vt,p)
1 + r

IV,t+1

18



+ `(ut−1, vt,p)
[
y0 − w0 +

1
1 + r

(
(1− δ)Eg(λ)

[
Iλ
F,t+1

]
+ δIV,t+1

)]
,(12)

where the expectation in (12) is taken with respect to a probability

distribution function g that will be specified shortly below. A job that

is filled at the beginning of period t by a worker with λ contacts brings in

gross profits of y1, since her probationary period has then ended. The worker

receives a wage rate wλ
1 . The last term is the discounted future payoff of a

filled job, accounting for the probability δ that the job is lost and a vacancy

has to be put out in the next period.

In expressing the expected value of a filled vacancy in the following period

in the r.h.s. of (12), we have to take into account that vacancies are more

likely to end up with workers with more links. Therefore, from the point

of view of a firm, the probability that is a job is filled by a worker with λ

contacts is given by:

g(λ;ut−1, vt,p) =
pλut−1,λh(λ,ut−1, vt,p)

m(ut−1, v,p)
. (13)

This is a correction for connection bias, this time with regard to firms.

4.1 Steady State

At steady state, Iλ
F,t = Iλ

F,t+1 = Iλ
F , and uλ

t−1 = uλ for all λ, λ = 0, . . . , L−1,

IV,t = IV,t+1 = IV and vt = v. Without loss of generality, we assume that

y0 = w0 = 0.5 Furthermore, in line with Pissarides (2000), at equilibrium

with free entry the value to firms of putting out an additional vacancy is
5This assumption prevents workers from quitting in order to improve their terms of

employment. In a more complete model, we could allow for worker productivity to differ
and require employment for one period in order for firms to ascertain productivity. In
that case, workers with higher productivities would likely be retained. To prevent undue
complications, the underlying productivity could be firm-specific, so that workers on the
market always look the same to firms.
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driven down to 0, IV = 0. These conditions and (12) together lead to

Eλ[Iλ
F `(u, v,p)] =

1 + r

1− δ
γ. (14)

This condition states that at the steady state equilibrium, the expected

value from filling a vacancy, given that these values depend on the number

of contacts by workers, is equal to the amortized cost of a filled job, given

that jobs break up at rate δ.

Condition (11) must hold for all λ at equilibrium. Therefore, solving for

Iλ
F yields:

Iλ
F = (y1 − wλ

1 )
1 + r

r + δ
. (15)

That is, the value of a filled vacancy is equal to expected present value of

a flow of net profit, adjusted for the probability of breakup. Using this

condition in (14) yields the labor demand equation:

Eλ

[(
y1 − wλ

1

)
`(u, v,p)

]
= γ

r + δ

1− δ
, (16)

where the expectation is taken with respect to probability density function

g(·), defined in (13). The expected profit per vacancy filled is equal to the

amortization of the fixed costs of hiring, while accounting for the likelihood

of jobs’ breaking up.

4.2 Wages

Next we turn to the supply side of the labor market. We account for the

dependence on the number of contacts of the wage rate and of the probability

of receiving job opening information by indexing by λ the intertemporal

gains of an employed, Iλ
E,t, and an unemployed worker, Iλ

U,t, at the beginning

of period t, before vacancies are posted. In a manner similar to CAZ, we
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arrive at the following Bellman equations:

Iλ
E,t = wλ

1 +
1

1 + r

[
(1− δ)Iλ

E,t+1 + δIλ
U,t+1

]
, (17)

Iλ
U,t =

1− h(λ, ūt−1, vt,p)
1 + r

Iλ
U,t+1

+ h(λ, ūt−1, vt,p)
[
w0 +

1
1 + r

(
(1− δ)Iλ

E,t+1 + δIλ
U,t+1

)]
. (18)

At steady state Iλ
E,t = Iλ

E,t+1 = Iλ
E , Iλ

U,t = Iλ
U,t+1 = Iλ

U , ūt−1 = ūt = ū.

The surplus for a worker with λ contacts is then obtained from (18) from

(17) by solving for Iλ
E − Iλ

U :

Iλ
E − Iλ

U =
1 + r

r + δ + (1− δ)h(λ, ū, v,p)
wλ

1 . (19)

The wage for a worker with λ contacts wλ
1 is determined by a Nash

bargaining, with workers’ bargaining power being denoted by β ∈ [0, 1].

That is,

wλ
1 = arg max : (Iλ

E − Iλ
U )β(Iλ

F − IV )1−β. (20)

By solving from the first-order condition, (1 − β)(Iλ
E − Iλ

U ) = β(Iλ
F − IV ),

and using (19) and (15) we obtain a wage equations for each type of worker,

defined in terms of the number of contacts:

wλ
1 =

β(r + δ) + β(1− δ)h(λ, ū, v,p)
r + δ + β(1− δ)h(λ, ū, v,p)

y1. (21)

An important property of the wage rate readily follows.

Proposition 3 For β ∈ (0, 1), the wage rate wλ
1 is a positive fraction of

gross revenue y1 that is strictly bounded above by 1, and increasing in a

worker’s bargaining power and in the number of a worker’s social contacts

λ.
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A worker with more sources of information in the form of a greater

number of contacts may avail herself of a greater wage rate via the wage-

bargaining process with an employer. Naturally, if a worker has full

bargaining power, β = 1, she extracts the total gross revenue from a job,

irrespective the number of connections. We note that the wage rate depends

on the matching model only through the probability h that an unemployed

worker hears of a vacancy either directly from an employer or indirectly via

her social contacts. We note that our matching model generates unequal

outcomes even though workers are otherwise identical in production because

of heterogeneity with respect to social connections. Such heterogeneity

differentiates the value of employment for workers.

4.3 Steady-state labor market equilibrium

Job creation and job destruction are assumed to take place as follows.

At the beginning of each period, some of the unemployed workers find

jobs and start their probationary period. At the end of each period,

employed workers, which includes newly hired and incumbent employees,

lose their jobs because jobs break up, with probability equal to δ. Among

all workers, a fraction pλ have λ links. Of these workers, a fraction equal

uλ
t−1h(λ, ūt, vt,p) enter employment at the beginning of period t. The rate

at which workers with λ links flow out of employment at the end of period t

equals δ
[
1− uλ

t−1 + uλ
t−1h(λ, ūt, vt,p)

]
. The evolution of the unemployment

rate for workers with λ contacts is given by the difference between the flow

into and out of unemployment:

uλ
t − uλ

t−1 = δpλ(1− uλ
t−1)− (1− δ)pλuλ

t−1h(λ, ūt, vt,p). (22)
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In steady state, the vacancy rate is constant, as are the unemployment rates

for workers with λ connections (λ = 0, . . . , L − 1): uλ
t−1 = uλ

t = uλ for all

λ, and vt−1 = vt = v. Expected flows into and out of unemployment must

equal one another. Rewriting yields conditional Beveridge curves, one for

each worker type. At the steady state, these are given by:

uλ =
δ

δ + (1− δ)h(λ, ū, v,p)
, λ = 0, 1, . . . , L− 1. (23)

In the special case where is a integer s such that pλ = 1 for λ = s and 0

otherwise, we are back in the CAZ case where (23) reduces to one equation.

From Proposition 1, part (c), P is increasing and concave in v and so is

h. Therefore, the functions uλ, the conditional Beveridge curves, are convex

and decreasing in the vacancy rate. The lemma that follows states that

workers with more social contacts incur lower unemployment rates.

Lemma 1 In equilibrium uλ < uλ∗ if and only if λ > λ∗.

Proof: Note that ∂h(λ, ū, v,p)/∂λ = (1 − v)∂P (λ, ū, v,p)/∂λ > 0 and the

above claim readily follows from (23) and (7), the definition of P (·). ¤

It turns out that at equilibrium better connected workers face a lower

expected unemployment rates. Next we turn to examining existence and

uniqueness of the equilibrium solution.

An equilibrium solution (u∗, v∗,w1
∗) is a solution to system of the

labor demand equation (16), the individual Beveridge curves (23) and

the wage functions (21). However, it suffices to find equilibrium values

of the unemployment rates for all worker types, which imply an average

unemployment rate, and the vacancy rate: (u∗, v∗). The unemployment rates

for each worker type satisfy the system of L equations (23) and the definition
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ū =
∑

λ pλuλ. A condition for the equilibrium vacancy rate is obtained as

follows. Using (21) in (16) and recalling the definition of the function h(·),
yields:

Eλ

[
`(u, v,p)

r + δ + β(1− δ)[v + (1− v)P (λ, ū, v,p)]

]
y1 =

γ

(1− β)(1− δ)
. (24)

The equilibrium wages are given by (21).

The following proposition gives a sufficient condition for existence and

uniqueness of the labor market equilibrium for any given degree distribution

p.

Proposition 4 Suppose that 1 ≥ γ[r+δ+(1−δ)β]
y1(1−β)(1−δ) ≥ δ and that δ > maxλ δ̃λ

with

δ̃λ ≡
v + (1− v)

{
P (λ, ū, v,p) + pλ

∂P (λ,ū,v,p)
∂ū

}

v + (1− v)
{

P (λ, ū, v,p) + pλ
∂P (λ,ū,v,p)

∂ū

}
− 1

.

Then there exists a unique labor market equilibrium (u∗, v∗,w1
∗) for any

given degree distribution p.

5 Results for the Poisson and Binomial Degree
Distributions

This section provides some illustrations for the theoretical results that are

obtained in this paper. First we assume that the degree distribution is

Poisson(θ). That is, the probability that a worker has k contacts equals

e−θθk/k!. The parameter θ will replace p in all expressions since it is a

sufficient statistic for the degree distribution. Equation (7) reduces to

P (λ, ū, v, θ) = 1−
[
1− v(1− ū)

ūθ

[
1− e−ūθ

]]λ

. (25)
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It follows that given the number of direct contacts λ the probability of

receiving a job offer through one’s social contacts decreases with the size of

the network.

Proposition 5 Let λ ∼ Poisson(θ). Then

∂P (λ, ū, v, θ)/∂θ < 0,

P (λ, ū, v,∞) = 0, limθ↓0 P (λ, ū, v, θ) = 1− [1− v(1− ū)]λ.

The intuition is as follows. Suppose a worker j has λ direct contacts,

then an increase in θ means that the average degree of these direct contacts

increases, i.e. they have more other contacts besides worker j. Worker j’s

probability of receiving indirect job offers decreases because of this increased

competition.

Of course, the increase in θ not only implies an increase in the number

of contacts of an individual worker’s contacts, but also a general increase

in the degrees of all workers. All workers will have more direct connections

on average, which increases the probability that they receive information on

vacancies.

Calvó-Armengol and Zenou find that for small enough networks the

probability of receiving indirect job offers increases with network size,

that is, the positive effect of more direct connections outweighs the

negative impact of increased competition. In their model however, the

net effect becomes negative for networks that exceed a critical size, due

to increased coordination failures (the same unemployed worker receives

multiple vacancies) such that the limiting value P (+∞, ū, v) = 1 −
exp(−v(1 − ū)/ū) is reached from above. This implies that the matching
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function first increases with network size but decreases again when the

network reaches a certain size.

In contrast, for the numerical example in the next section the matching

function monotonically increases with θ. Although we have not been able

to prove this claim formally, we conjecture that this holds in general. When

links are randomly Poisson distributed, the probability of receiving an

indirect job offer increases with θ and is below the limiting value for all

values of θ.6 The intuition behind the difference between our findings and

theirs is that in the case of random connections, not all workers benefit to the

same extent from an increase in θ; workers who do not acquire additional

direct links are only hurt because of the increased competition for their

contacts’ information. Although the aggregate net effect of an increase in θ

is positive, this inertia causes the matching function to increase more gently

than in the deterministic case.

The following proposition states that when the degree distribution is

Poisson, the condition on the job destruction rate δ in Proposition 4 is

satisfied for all relevant values of θ.

Proposition 6 If λ ∼ Poi(θ), θ ≥ 0.6254, and 1 ≥ γ[r+δ+(1−δ)β]
y1(1−β)(1−δ) ≥ δ, there

exists a unique labor market equilibrium (u∗, v∗,w1
∗).

The condition on θ ensures that λ in Proposition 1 (b) is nonpositive,

such that ∂P (λ, ū, v,p)/∂ū is minimal for ū = 1 for all λ. This condition

is not necessary for a unique equilibrium to exist, but for smaller values

of θ, one has to solve for the average unemployment rate which minimizes

P (λ, ū, v,p)/∂ū.
6Formal derivation is complicated by the fact that one has to account for heterogeneity

in unemployment rate between workers with different degrees.
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5.1 Numerical Example: Poisson Degree Distribution

This section provides a numerical example for the special case where the

underlying degree distribution is Poisson. Suppose a long-term productivity

of y1 = 1; a discount factor r = 0.05; a job breakup rate of δ = 0.05; and

a search cost of γ = 0.3. Moreover, we let workers and firms have equal

bargaining power: β = 0.5. Table 1 gives the numerical results. Figure 1

plots the associated distributions of wages and of unemployment rates for

different values of θ.

We observe that as the network grows more dense — i.e. θ increases

— average unemployment falls and the average wage rate increases. Also,

the unemployment levels and wage rates of the least connected workers

decrease as overall network density increases. The average unemployment

rate among workers without connections is three to four times as large as the

unemployment rate of the most well connected individuals. The wage rates

of the latter are 15% till 25% higher. Furthermore, the table shows that

the equilibrium vacancy rate falls as network density increases, probably

because of the higher wage rates firms have to pay due to workers increased

bargaining power.

Interestingly, the next to last column of the table indicates that the

matching function monotonically increases with network density. This is

in contrast to Calvó-Armengol and Zenou (2005), who identify a critical

network density above which the matching declines, due to increasingly

important coordination failures due to multiple vacancies ending up with

the same worker.

The second part of table 1 shows what happens to the equilibrium

outcome when each of the other parameters of the model are changed in
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turn while θ remains constant, θ = 5. Relative to the baseline case, average

unemployment doubles and wages increase by about 8% if the bargaining

power of workers increases to β = 0.8. When γ increases, meaning that the

search costs for firms become higher, average unemployment also increases

and wage rates fall. Increased productivity of experienced workers raises

their wage levels and lowers their unemployment. A higher layoff rate δ has

the opposite effect. Raising the discount factor r leads to lower wages and

a somewhat higher unemployment rate.

Given the numerical results of average unemployment decreasing in θ,

the question arises whether one can formally prove that

dū(θ)
dθ

=
∫ ∞

0
u

dp(u; θ)
dθ

du < 0?

Table 1 however shows that the maximum unemployment rate is increasing

in θ. This implies that the unemployment distribution p(u) is not

stochastically increasing in θ, which complicates finding such a proof.7

5.2 Numerical Example: Negative Binomial Degree Distribution

We note that the computed wage and unemployment rate distributions

display a tendency, for small to medium values of the mean number of

contacts, towards a second mode. We explore this further by working with

degree distribution that is a negative binomial. This distribution, being a

mixture of Poisson with Gamma, has two parameters and thus allows one

to vary the variance while holding the mean constant and is therefore more

flexible.
7That is, for G(u) ≡ R u

0
p(x; θ0)dx and F (u) ≡ R u

0
p(x; θ1)dx with θ1 > θ0, it does not

hold that G(u) ≥ F (u) ∀u. Compare proposition 2 in Mortensen and Vishwanath (1994)
on earnings stochastically increasing in contact probability.
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Given a NegBin(κ, χ) degree distribution, equation (7) reduces to

P (λ, ū, v, κ, χ) = 1−
[
1− v(1− ū)χ

ūκ(1− χ)

[ −χκ

(1− (1− χ)(1− ū))κ + 1
]]λ

(26)

Table 2 gives the values and Figure 2 plots the distributions of wages

and unemployment rates associated with different NegBin(κ, χ) degree

distributions. Because E(k) = κ(1−χ)/χ, taking χ = 0.5 and κ = 3, 5, 10, 20

gives average degrees similar to the example with the Poisson(θ) distribution.

The tendency towards a second mode is indeed more pronounced for the

case of negative binomial distribution. Relative to the Poisson distribution,

dispersion of wages and unemployment rates as measured by the standard

deviation is greater. We are in the process of exploring further the

possibilities opened up by the negative binomial degree distribution.

6 Conclusions

Social connections are widely regarded as an important source for workers

of information about job vacancies. In previous research that has addressed

the role of social ties, the social structure was either left implicit or modelled

as complete or balanced networks.

This paper is motivated by recent developments in the formal modelling

of social networks and aims at a better understanding of how different social

structures affect labor market outcomes. It allows for heterogeneity in the

number of connections among workers. The paper derives conditions for

which a unique labor market equilibrium exists. It also shows that such

heterogeneity has important consequences. Workers with more connections

both receive a higher wage and face a lower rate of unemployment at

equilibrium. For the specific cases in which connections follow Poisson and
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negative binomial distributions our numerical results show that variability

in connections can produce substantial variation in labor market outcomes.

One lesson from the computational analysis is that (changes in) the social

structure sometimes affect labor market outcomes in nontrivial ways. For

example, when society becomes more connected, the average unemployment

level falls but the unemployment rate of workers with few connections rises.

From among many outstanding issues that remain several are particularly

interesting. One immediate concern is to show that for the case in which

connections are Poisson distributed, the conditions for equilibrium existence

may be weakened and that the matching function is non-decreasing in the

Poisson parameter. Another is to explore patterns of informational asymmetries

between workers and firms. The intricacies of search from the viewpoint of

firms is also worth investigating. The two routes via which workers hear

about vacancies, that is directly from firms and indirectly via their social

contacts, correspond neatly to global and local information in the context

of the social interactions literature. It would be interesting to explore

this analogy further, perhaps by modelling how social networks aid labor

market adjustment and by allowing for additional rounds of information

transmission by workers, per each round of vacancy announcements by

firms. Yet another extension would be to let the probationary period in

employment to serve as a productivity screening device. That is, a firm

does not know a prospective worker’s actual productivity but finds out

after one period. It would then retain the worker, only if her productivity

exceeds a certain threshold. While features like this have been explored by

the literature, it is particularly interesting in our context because it would

generate a dependence between social connectedness and productivity, in

effect assortative matching. Workers who are better connected are more
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frequently employed and more productive. Some of these issues clearly

deserve further attention.
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Figure 1: Wage dispersion (a) and unemployment (b) distribution when the
degree distribution is Poisson(θ).
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Figure 2: Wage dispersion (a) and unemployment (b) distribution when the
degree distribution is NegBin(κ, χ).
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Appendix

Whenever possible, our proofs benefit from the reasoning employed in Calvó-

Armengol and Zenou (2005). Throughout, we assume that ū > 0.

Proof of Proposition 1

Let q(ū,p) = (1−ū)
[
1− E(1− ū)k

]
/ūE(k) and Q(λ, ū, v,p) = [1− vq(ū,p)]λ.

Then P (λ, ū, v,p) = 1−Q(λ, ū, v,p).

(a) We have ∂P/∂λ = −∂Q/∂λ = −[1 − vq]λ ln(1 − vq) > 0 and

∂2P/∂λ2 = −∂2Q/∂λ2 = −[1− vq]λ ln2(1− vq) < 0.

(b) We have ∂P/∂ū = −∂Q/∂ū and ∂Q/∂ū = −λv[1 − vq]λ−1(∂q/∂ū).

We extend the original reasoning of Calvó-Armengol and Zenou.

First, differentiating q with respect to ū gives

∂q

∂ū
=

∂

∂ū

[
1− ū

ū

(
1−∑∞

k=0 pk(1− ū)k

E(k)

)]

=
ū[

∑∞
k=0 pk(1− ū)k − 1 + (1− ū)

∑∞
k=0 pkk(1− ū)k−1]− (1− ū)[1−∑∞

k=0(1− ū)k]
ū2E(k)

=
1

ū2E(k)

[
E

[
(1 + ūk)(1− ū)k

]
− 1

]
< 0.

The last inequality follows since

∂(1 + ūk)(1− ū)k/∂k = ū(1− ū)k + (1 + ūk)(1− ū)k ln(1− ū)

= [ū + (1 + ūk) ln(1− ū)] (1− ū)k

=
[
ū− (ū + ū2/2 + ū3/3 + . . .)(1 + ūk)

]
(1− ū)k < 0,

and for k = 1 (and p1 = 1), E
[
(1 + ūk)(1− ū)k

] − 1 = (1 + ū)(1 −
ū)− 1 = −ū2 < 0.
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Second,

q(1,p) = 0,

and, by applying l’Hôpital’s rule,

q(0,p) =
E(1− ū)k − 1 +

∑∞
k=0 pkk(1− ū)k−1(1− ū)
E(k)


ū=0

=
1− 1 + E(k)

E(k)
= 1

Thus 0 ≤ q ≤ 1, and it follows that ∂Q/∂ū > 0.

Now suppose that the number of contacts a worker can have is

restricted to, say, L − 1, such that pk = 0 for k ≥ L. The fact that q

decreases in ū implies that Q increases in ū. Since q is a polynomial

in ū of degree L− 1, Q is a polynomial in u of degree λ(L− 1). For a

given λ, v and p, since the polynomial ∂Q/∂ū > 0 on (0, 1) of degree

λ(L− 1)− 1 has no roots on (0, 1), the polynomial ∂2Q/∂ū2 of degree

λ(L− 1)− 2 can have at most one root on (0, 1) and changes sign at

most once on that interval.

Differentiating once more, we have

∂2P

∂ū2
= −∂2Q

∂ū2
= vλ(1− vq)λ−2

[
(1− vq)

∂2q

∂ū2
− v(λ− 1)

(
∂q

∂ū

)2
]

.

The second derivative of q with respect to ū equals

∂2q

∂ū2
=

∂

∂ū

[
1
ū2

(
E[(ūk + 1)(1− ū)k]− 1

)]
1

E(k)

=
1

ū3E(k)

[
E

[
[(2− k)ū− 2](ūk + 1)(1− ū)k

]

1− ū
+ ūE

[
k(1− ū)k

]
+ 2

]
.

For the specific value ū = 1, we obtain




q(1,p) = 0
∂q(1,p)/∂ū = (p0 − 1)/E(k)
∂2q(1,p)/∂ū2 = 2(1− p0 − p1)/E(k)
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Thus, ∂2Q(λ, 1, v,p)/∂ū2 = (−vλ/(Ek)2)
[
2(1− p0 − p1)E(k)− v(λ− 1)(p0 − 1)2

]
.

∂2Q(λ, 1, v,p)/∂ū2 ≤ 0 if and only if λ ≤ 1+2(1−p0−p1)E(k)/(v(p0−
1)2) ≡ λ.

For ū = 0,




q(0,p) = 1
∂q(0,p)/∂ū = − (

E(k2) + E(k)
)
/2E(k)

∂2q(0,p)/∂ū2 =
(
E(k3)−E(k)

)
/3E(k)

From this, we obtain

∂2Q(λ, 0, v,p)/∂ū2 =

−vλ(1− v)λ−2

E(k)

[
v − 1

3
+

1
E(k)

(
1− v

3
E(k3)− v(λ− 1)

4
[E(k2)−E(k)]2

)]
.

Thus, ∂2Q(λ, 0, v,p)/∂ū2 ≤ 0 if and only if λ ≤ 1+4(1−v)
[
E(k3)−E(k)

]
/

(3v
[
E(k2) + E(k)

]2) ≡ λ̃. Given that ∂2Q(λ, ·, v,p)/∂ū2 is continuous

and changes sign at most once in [0,1], whenever λ < λ̃, we have ũ = 0

and ∂2Q(λ, ·, v,p)/∂ū2 < 0 for all ū ∈ [0, 1].

(c) ∂P/∂v = −∂Q/∂v = λQ/(1 − vq) ≥ 0 and ∂2P/∂v2 = −∂2Q/∂v2 =

− [
λ(λ− 1)q2Q

]
/(1− vq)2 ≤ 0. ¤

Proof of Proposition 2

Note that ∂P (λ, ū, v,p)/∂uλ = (∂P (λ, ū, v,p)/∂ū)(∂ū/∂uλ) = pλ∂P (λ, ū, v,p)/∂ū.

∂m(u, v,p)
∂uλ

= pλv + (1− v)
∂

∂uλ

[
L−1∑

λ=0

pλuλP (λ, ū, v,p)

]

= pλv + (1− v)

[
pλP (λ, ū, v,p) +

L−1∑

λ=0

p2
λuλ

∂P (λ, ū, v,p)
∂ū

]
> 0.
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∂m(u, v,p)
∂v

=
L−1∑

λ=0

pλuλ(1− P (λ, ū, v,p)) + (1− v)
L−1∑

λ=0

pλuλ
∂P (λ, ū, v,p)

∂v

= ū−
L−1∑

λ=0

pλuλP (λ, ū, v,p) + (1− v)
L−1∑

λ=0

pλuλ
∂P (λ, ū, v,p)

∂v
> 0.

∂2m(u, v,p)
∂v2

= −2
L−1∑

λ=0

pλuλ
∂P (λ, ū, v,p)

∂v
+ (1− v)

L−1∑

λ=0

pλuλ
∂2P (λ, ū, v,p)

∂v2
< 0

¤

Lemma 2 The filling probability f(u, v,p) is increasing in uλ and decreasing

in v.

Proof Since f(u, v,p) = m(u, v,p)/v =
[∑L−1

λ=0 pλuλh(λ, ū, v,p)
]
/v, it

follows that

∂f(u, v,p)
∂uλ

=
1
v

∂m(u, v,p)
∂uλ

> 0

and

∂f(u, v,p)
∂v

= − 1
v2

L−1∑

λ=0

pλuλP (λ, ū, v,p)−
L−1∑

λ=0

pλuλ(1−1/v)
∂P (λ, ū, v,p)

∂v
< 0.

¤

Proof of Proposition 3

Taking first differences of equation (21) gives

∂wλ
1

∂λ
=

β(1− δ)(∂h/∂λ)[r + δ + β(1− δ)h]y1 − (∂h/∂λ)(1− δ)β2[r + δ + (1− δ)h]y1

[r + d + β(1− δ)h]2

=
β(1− δ)(∂h/∂λ)[(1− β)(r + δ)]y1

r + d + β(1− δ)h]2
> 0

Note that ∂wλ
1/∂λ = 0 if β = 0 or β = 1. ¤
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Proof of Proposition 4

To proof proposition 4, note that the equation for labor demand (16), the

L wage curves in (21) and the L individual Beveridge curves given by (23)

render us with 2L + 1 equations from which we have to distill the 2L + 1

unknowns: uλ, v and wλ with λ ∈ {0, 1, . . . L− 1}.
We first show that for all λ, v is decreasing in uλ along the individualized

Beveridge curve given by equation (23), which is repeated here for

convenience,

(1− δ)uλh(λ, ū, v,p) = δ(1− uλ), λ ∈ {0, 1, . . . , L− 1}. (A.1)

Note that since h(·) ≤ 1, uλ ≥ δ for all values of λ.

Applying the implicit function theorem gives

dv

duλ
=
−[δ + (1− δ)∂uλh(λ,ū,v,p)

∂uλ
]

(1− δ)uλ
∂h(λ,ū,v,p)

∂v

, (A.2)

the denominator of which is positive. Thus,

dv

duλ
< 0 ⇔ ∂uλh(λ, ū, v,p)

∂uλ
> − δ

1− δ

⇔ v + (1− v)P (λ, ū, v,p) + (1− v)pλuλ
∂P (λ, ū, v,p)

∂ū
> − δ

1− δ
.

The first part on the left hand side represents the positive direct

effect of the higher unemployment of agents with λ connections on the

number of job matches; the second part represents the indirect effect

increased unemployment among λ-types has on their individual hiring

probability through the average unemployment rate. This effect is negative.

The condition states that the net of these two effects must be large

enough such that an additional decrease in the vacancy rate in order to
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reestablish equilibrium. The condition is violated if the probability of

receiving an indirect job offer is “too sensitive” to changes in the average

unemployment level.8 The condition is less stringent for higher break-up

rates δ. The intuition is that higher break-up rates imply larger per period

flows into unemployment and smaller flows into employment. A slightly

higher unemployment level then causes a sharp decline in the flow into

unemployment which in equilibrium has to be matched by a equally large

decline of the flow into employment. This can only be established by a

decrease in the vacancy rate v, decreasing an agent’s probability of receiving

a direct job offer.

This renders us with a condition on uλ, ∀λ, that

uλ < ũλ =
v + (1− v)P (λ, ū, v,p) + δ/(1− δ)

−(1− v)pλ
∂P (λ,ū,v,p)

∂ū

> 0. (A.3)

These restrictions are non-binding if ũλ ≥ 1, ∀λ. This translates as

follows into conditions on δ:

ũλ > 1 ⇔ δ > δ̃λ ≡
v + (1− v)

{
P (λ, ū, v,p) + pλ

∂P (λ,ū,v,p)
∂ū

}

v + (1− v)
{

P (λ, ū, v,p) + pλ
∂P (λ,ū,v,p)

∂ū

}
− 1

,

⇔ P (λ, ū, v,p) + pλ
∂P (λ, ū, v,p)

∂ū
< 1.

Thus, a sufficient condition on the job destruction rate δ that ensures

the downward sloping form of the all individual Beveridge curves is that

δ > max
λ

δ̃λ. (A.4)

Note that this condition is always satisfied if δ̃λ < 0 for all λ which happens

if P (λ, ū, v,p) + pλ
∂P (λ,ū,v,p)

∂ū > − v
1−v .9

8Because ∂P/∂ū = λv[1 − vq]λ−1(∂q/∂ū), we do not know in general for which value
of λ, this sensitivity is greatest.

9In Calvó-Armengol and Zenou (2005), Proposition 2 and 3, similar restrictions on the
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We next prove that along the curve (24), uλ is increasing in v.

Equation (24) can be rewritten as

y1 =
γ(r + δ)

(1− δ)f(u∗, v∗,p)
{

1− βEg

[
r+δ+(1−δ)h(λ,ū∗,v∗,p)
r+δ+β(1−δ)h(λ,ū∗,v∗,p)

]} , (A.5)

Define

z(λ) ≡ r + δ + (1− δ)h(λ, ū, v,p)
r + δ + β(1− δ)h(λ, ,̄u, v,p)

and

b(λ) ≡
∑L−1

k=0 {pkukh(k, ū, v,p)z(k)}
m(u, v,p)

+
(r + δ)2 + 2(r + δ)(1− δ)h(λ, ū, v,p)

(r + δ + β(1− δ)h(λ, ū, v,p))2

= Eg[z(µ)] +
(r + δ)2 + 2(r + δ)(1− δ)h(λ, ū, v,p)

(r + δ + β(1− δ)h(λ, ū, v,p))2
.

Applying the implicit function theorem equation (A.5) leads (after a

number of tedious calculations, which are available upon request) to

∂v

∂uλ
=

−pλ
∑L−1

µ=0

[
pµuµb(µ)∂h(µ)

∂ū

]
+ pλh(λ)

[
1
β − z(λ)

]

∑L−1
µ=0

{
pµuµb(µ)∂h(µ)

∂v

}

−
pλ(v − 1)

(∑L−1
µ=0 pµuµ

∂P (µ,ū,v,p)
∂ū

) [
1
β − Eg[z(µ)]

]

∑L−1
µ=0

{
pµuµb(µ)∂h(µ)

∂v

} > 0 ∀λ.

The inequality follows since ∂h(µ)/∂ū < 0, ∂h(µ)/∂v > 0, b(µ) > 0,

∂P (µ, ū, v,p)/∂ū > 0 and

1
β
− z(λ) > 0 ⇔ 1− (r + δ)(1− β)

r + δ + β(1− δ)h(λ)
< 1,

values of u should be satisfied: the proof of their Proposition 2(ii) shows that ∂uP (s,u,v)
∂u

is only positive for values of u smaller than a certain value ũ.
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and one easily sees that the latter inequality always holds given any value

of λ; from this, it automatically follows that 1
β −Eg[z(µ)] > 0.

Thus, as in Calvó-Armengol and Zenou (2005), if a labor market

equilibrium exists, it is unique. In the same vein as Calvó-Armengol and

Zenou, we prove existence. At v = 1, h(λ, ū, 1,p) = 1 and we deduce

from (24) that (δ, 1) belongs to all L individual Beveridge curves. Since

f(u, 1,p) = ū,
(

γ[r+δ+(1−δ)β]
y1(1−β)(1−δ) , 1

)
satisfies (A.5), for which γ[r+δ+(1−δ)β]

y1(1−β)(1−δ) ≤ 1.

It is not surprising that this condition coincides with that in Calvó-Armengol

and Zenou, because setting v = 1 in fact undoes the positive effects of having

more connections. The necessary conditions 1 ≥ γ[r+δ+(1−δ)β]
y1(1−β)(1−δ) ≥ δ and (A.4)

therefore ensure equilibrium existence.

Proof of Proposition 5

Suppose that the degree distribution is Poisson(θ). In that case (with

ū > 0), q(u, θ) = 1−ū
ūθ [1− e−ūθ]. Then P (λ, ū, v, θ) = 1− [1− vq(ū, θ)]λ.

Then the derivative of P (·) with respect to θ is ∂P (λ, ū, v, θ)/∂θ =

λv[1− vq(ū, θ)]λ−1(∂q/∂θ). Some algebra shows that

∂q(ū, θ)
∂θ

=
1− ū

ūθ2

[
(θū + 1)e−ūθ − 1

]
=

1
θ

[
(1− ū)e−ūθ − q

]
< 0,

where the last inequality follows by applying the Taylor series of e−x

expanded around ūθ. Thus ∂P (λ, ū, v, θ)/∂θ < 0. Likewise,

∂2P (λ, ū, v, θ)
∂θ2

= λv [1− vq(ū, θ)]λ−2

[
(1− vq(ū, θ))

∂2q

∂θ2
− (λ− 1)v

(
∂q

∂θ

)2
]

> 0.

The last inequality follows from the fact that

∂2q(ū, θ)
∂θ2

=
1− ū

ūθ3

[
2− (

(θū + 1)2
)
e−ūθ

]
> 0.

The inequality again follows from applying the Taylor series of e−x around

ūθ.
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Since q(ū,∞) = 0 and limθ↓0 q(ū, θ) = (1 − ū), it further follows that

P (λ, ū, v,∞) = 0 and limθ↓0 P (λ, ū, v, θ) = 1− [1− v(1− ū)]λ. ¤

Proof of Proposition 6

Given that the degree distribution is Poisson, the expression for λ in

Proposition 1 equals:

λ(θ) =
1− 2θ(1− e−θ(1− θ))

v(e−θ − 1)2
,

the denominator of which is nonnegative. Because ∂λ(θ)/∂θ < 0, ∀θ > 0,

λ(θ) = 0 has a unique solution: θ̃ ≈ 0.625359. Application of Proposition 1

(b) states that, if θ ≥ θ̃, ∂P (λ, ū, v,p)/∂ū attains a minimum at ū = 1, for

all values of λ.

From Proposition 4 we know that the equilibrium condition on δ is

satisfied if P (λ, ū, v,p) + pλ
∂P (λ,ū,v,p)

∂ū > − v
1−v . The left-hand side of this

inequality reaches its minimum for ū = 1. In that case,

∂P (λ, ū, v,p)
∂ū

∣∣∣∣
ū=1

= λv[1− vq(ū,p)]λ−1 ∂q(ū,p)
∂ū

∣∣∣∣
ū=1

= λv
p0 − 1

θ
= λv(e−θ − 1)/θ.

Then,

P (λ, ū, v,p) + pλ
∂P (λ, ū, v,p)

∂ū
=

θλe−θ

λ!
λv(e−θ − 1)

θ

=
θλ−1e−θ

(λ− 1)!
v(e−θ − 1).

Noticing that

max
λ

[
θλ−1e−θ

(λ− 1)!
v(e−θ − 1)

]
=

θθe−θ

θ!
v(e−θ − 1) ≥ −1

leads to

δ̃θ =
v + v(1− v) θθe−θ

θ! (e−θ − 1)

v + v(1− v) θθe−θ

θ! (e−θ − 1)− 1
≤ 0 ∀v.

This completes the proof. ¤
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