"Identification of Social Interactions"

Larry Blume, Buz Brock, Steven Durlauf and Yannis loannides

Dallas, November 5, 2010

Outline of talk

Modeling Social Interactions
Manski (1993) and the social reflection problem
Estimation of social interactions in the linear-in-means model
Discrete choice models of social interactions
Social Networks and Spatial Models
Social Networks: known structure
Social Networks: unknown structure Social Networks: unknown structure, continued Social Networks: unknown structure, continued

Laboratory experiments
Quasi-experiments
Conclusion

Importance of social context in economic decisions

- Individuals or firms influenced by the characteristics of others and the decisions of others
- For individuals in residential neighborhoods, schools, workplace, random encounters, serendipity

Importance of social context in economic decisions

- Individuals or firms influenced by the characteristics of others and the decisions of others
- For individuals in residential neighborhoods, schools, workplace, random encounters, serendipity
- For firms: proximity to suppliers, and to competitors; main ingredient of new economic geography

Importance of social context in economic decisions

- Individuals or firms influenced by the characteristics of others and the decisions of others
- For individuals in residential neighborhoods, schools, workplace, random encounters, serendipity
- For firms: proximity to suppliers, and to competitors; main ingredient of new economic geography
- For individuals: neighborhood effects, peer effects, role models boost by Brock and Durlauf (2001a; b); empirical work followed
- Literature has learned from other social sciences and seems to be having an effect in the other direction
- For firms, many phenomena well studied by urban economics such as urbanization versus localization economies. Effort to unify by loannides (2010); shall see how it is received.

Importance of social context in economic decisions

- Individuals or firms influenced by the characteristics of others and the decisions of others
- For individuals in residential neighborhoods, schools, workplace, random encounters, serendipity
- For firms: proximity to suppliers, and to competitors; main ingredient of new economic geography
- For individuals: neighborhood effects, peer effects, role models
- Unified treatment is relatively new, since Manski (1993), big boost by Brock and Durlauf (2001a; b); empirical work followed.
- Literature has learned from other social sciences and seems to be having an effect in the other direction
- For firms, many phenomena well studied by urban economics, such as urbanization versus localization economies. Effort to unify by loannides (2010); shall see how it is received.

Decision making in group contexts

- Individual i in group g chooses $\omega_{i g}$,

$$
\begin{equation*}
\omega_{i g} \in \operatorname{argmax}_{\lambda \in \Omega_{i g}} V\left(\lambda, x_{i}, y_{g}, \mu_{i}^{e}\left(\omega_{-i g}\right), \varepsilon_{i}, \alpha_{g}\right) \tag{1}
\end{equation*}
$$

An R-vector of observable (to the modeler) individual-specific characteristics;
An S-vector of observable (to the modeler) group-specific characteristics; A probability measure, unobservable (to the modeler), that describes the beliefs individual i possesses about behaviors of others in the group; For purposes of the elucidation of the basic theory of choice in the presence of social interactions, we focus on the case where beliefs are latent variables. A vector of random individual-specific characteristics describing i, unobservable to the modeler; and A vector of random group-specific characteristics, unobservable to the modeler.

Decision making in group contexts

- Individual i in group g chooses $\omega_{\text {ig }}$,

$$
\begin{equation*}
\omega_{i g} \in \operatorname{argmax}_{\lambda \in \Omega_{i g}} V\left(\lambda, x_{i}, y_{g}, \mu_{i}^{e}\left(\omega_{-i g}\right), \varepsilon_{i}, \alpha_{g}\right) . \tag{1}
\end{equation*}
$$

- $\quad x_{i}$ An R-vector of observable (to the modeler) individual-specific characteristics;
$y_{g} \mathrm{An} S$-vector of observable (to the modeler) group-specific characteristics;
$\mu_{i}^{e}\left(\omega_{-i g}\right)$ A probability measure, unobservable (to the modeler), that describes the beliefs individual i possesses about behaviors of others in the group; For purposes of the elucidation of the basic theory of choice in the presence of social interactions, we focus on the case where beliefs are latent variables.
ε_{i} A vector of random individual-specific characteristics describing i, unobservable to the modeler; and
α_{g} A vector of random group-specific characteristics, unobservable to the modeler.

Equilibrium condition

- The decision problem facing an individual, a function of preferences (embodied in the specification of V); constraints (embodied in the specification of $\Omega_{i g}$); and beliefs (embodied in the specification of $\left.\mu_{i}^{e}\left(\omega_{-i g}\right)\right)$. Completely standard microeconomic reasoning.
- Closed by the assumptions under which $\mu_{i}^{e}\left(\omega_{-i g}\right)$ is determined
- self-consistency between subjective beliefs $\mu_{i}^{e}\left(\omega_{-i g}\right)$ and the objective conditional probabilities of the behaviors of others given i 's information set F_{i}

$$
\begin{equation*}
\mu_{i}^{e}\left(\omega_{-i g}\right)=\mu\left(\omega_{-i g} \mid F_{i}\right) . \tag{2}
\end{equation*}
$$

- Demonstrate by applying to the linear case
- Much of the empirical literature on social economics has involved variations of a general linear model, Manski (1993)

Equilibrium condition

- The decision problem facing an individual, a function of preferences (embodied in the specification of V); constraints (embodied in the specification of $\Omega_{i g}$); and beliefs (embodied in the specification of $\left.\mu_{i}^{e}\left(\omega_{-i g}\right)\right)$.
Completely standard microeconomic reasoning.
- Closed by the assumptions under which $\mu_{i}^{e}\left(\omega_{-i g}\right)$ is determined.
- self-consistency between subjective beliefs $\mu_{i}^{e}\left(\omega_{-i g}\right)$ and the objective conditional probabilities of the behaviors of others given i's information set F_{i}

$$
\begin{equation*}
\mu_{i}^{e}\left(\omega_{-i g}\right)=\mu\left(\omega_{-i g} \mid F_{i}\right) . \tag{2}
\end{equation*}
$$

- Demonstrate by applying to the linear case
- Much of the empirical literature on social economics has involved variations of a general linear model, Manski (1993)

Equilibrium condition

- The decision problem facing an individual, a function of preferences (embodied in the specification of V); constraints (embodied in the specification of $\Omega_{i g}$); and beliefs (embodied in the specification of $\left.\mu_{i}^{e}\left(\omega_{-i g}\right)\right)$.
Completely standard microeconomic reasoning.
- Closed by the assumptions under which $\mu_{i}^{e}\left(\omega_{-i g}\right)$ is determined.
- self-consistency between subjective beliefs $\mu_{i}^{e}\left(\omega_{-i g}\right)$ and the objective conditional probabilities of the behaviors of others given i 's information set F_{i} :

$$
\begin{equation*}
\mu_{i}^{e}\left(\omega_{-i g}\right)=\mu\left(\omega_{-i g} \mid F_{i}\right) \tag{2}
\end{equation*}
$$

- Demonstrate by applying to the linear case
involved variations of a general linear model, Manski (1993)

Equilibrium condition

- The decision problem facing an individual, a function of preferences (embodied in the specification of V); constraints (embodied in the specification of $\Omega_{i g}$); and beliefs (embodied in the specification of $\left.\mu_{i}^{e}\left(\omega_{-i g}\right)\right)$.
Completely standard microeconomic reasoning.
- Closed by the assumptions under which $\mu_{i}^{e}\left(\omega_{-i g}\right)$ is determined.
- self-consistency between subjective beliefs $\mu_{i}^{e}\left(\omega_{-i g}\right)$ and the objective conditional probabilities of the behaviors of others given i 's information set F_{i} :

$$
\begin{equation*}
\mu_{i}^{e}\left(\omega_{-i g}\right)=\mu\left(\omega_{-i g} \mid F_{i}\right) \tag{2}
\end{equation*}
$$

- Demonstrate by applying to the linear case
- Much of the empirical literature on social economics has involved variations of a general linear model, Manski (1993) the linear_in_meanc model

Linear-in-means model

$$
\begin{equation*}
\omega_{i g}=k+c x_{i}+d y_{g}+J m_{i g}^{e}+\varepsilon_{i}, \tag{6}
\end{equation*}
$$

where $m_{i g}^{e}$ denotes the average behavior in the group, i.e.

$$
\begin{equation*}
m_{i g}^{e}=\frac{1}{n_{g}} \sum_{j \in g} \mathrm{E}\left(\omega_{j} \mid F_{i}\right) \tag{7}
\end{equation*}
$$

- Equations (6) and (7) solve for a common value:

$$
\begin{equation*}
m_{i g}^{e}=m_{g} \equiv \frac{k+c \bar{x}_{g}+d y_{g}}{1-J} . \tag{10}
\end{equation*}
$$

Individuals' expectations of average behavior in the group equal the average behavior of the group.

Linear-in-means model

$$
\begin{equation*}
\omega_{i g}=k+c x_{i}+d y_{g}+J m_{i g}^{e}+\varepsilon_{i} \tag{6}
\end{equation*}
$$

where $m_{i g}^{e}$ denotes the average behavior in the group, i.e.

$$
\begin{equation*}
m_{i g}^{e}=\frac{1}{n_{g}} \sum_{j \in g} \mathrm{E}\left(\omega_{j} \mid F_{i}\right) \tag{7}
\end{equation*}
$$

- Equations (6) and (7) solve for a common value:

$$
\begin{equation*}
m_{i g}^{e}=m_{g} \equiv \frac{k+c \bar{x}_{g}+d y_{g}}{1-J} . \tag{10}
\end{equation*}
$$

Individuals' expectations of average behavior in the group equal the average behavior of the group.

- $m_{i g}^{e}$ depends linearly on x_{i}, \bar{x}_{g}, and the contextual interactions group g-specific, y_{g}. $J<1$: required for equation (10) to make sense.

Linear-in-means model

$$
\begin{equation*}
\omega_{i g}=k+c x_{i}+d y_{g}+J m_{i g}^{e}+\varepsilon_{i} \tag{6}
\end{equation*}
$$

where $m_{i g}^{e}$ denotes the average behavior in the group, i.e.

$$
\begin{equation*}
m_{i g}^{e}=\frac{1}{n_{g}} \sum_{j \in g} \mathrm{E}\left(\omega_{j} \mid F_{i}\right) \tag{7}
\end{equation*}
$$

- Equations (6) and (7) solve for a common value:

$$
\begin{equation*}
m_{i g}^{e}=m_{g} \equiv \frac{k+c \bar{x}_{g}+d y_{g}}{1-J} . \tag{10}
\end{equation*}
$$

Individuals' expectations of average behavior in the group equal the average behavior of the group.

- $m_{i g}^{e}$ depends linearly on x_{i}, \bar{x}_{g}, and the contextual interactions group g-specific, y_{g}. $J<1$: required for equation (10) to make sense.

A reduced form and standard practice

$$
\begin{equation*}
\omega_{i g}=\frac{k}{1-J}+c x_{i}+\frac{J}{1-J} c \bar{x}_{g}+\frac{d}{1-J} y_{g}+\varepsilon_{i} . \tag{11}
\end{equation*}
$$

where the parameters $\pi_{0}, \pi_{1}, \pi_{2}$ are estimated empirically.

- How do estimates of $\pi_{0}, \pi_{1}, \pi_{2}$ characterize social interactions in the sense of (6)?
$\pi_{2} \neq 0$ is neither necessary nor sufficient for endogenous social interactions to be present, since $J=0$ is neither necessary nor sufficient for $\pi_{2}=0$. Estimates of (12) are not uninformative; should be mapped to structural parameters in the sense of (6) when identification holds;
if identification does not hold, what does (12) imply about distinomishino tvnes of cocial interactinns?

A reduced form and standard practice

$$
\begin{gather*}
\omega_{i g}=\frac{k}{1-J}+c x_{i}+\frac{J}{1-J} c \bar{x}_{g}+\frac{d}{1-J} y_{g}+\varepsilon_{i} \tag{11}\\
\omega_{i g}=\pi_{0}+\pi_{1} x_{i}+\pi_{2} y_{g}+\varepsilon_{i} \tag{12}
\end{gather*}
$$

where the parameters $\pi_{0}, \pi_{1}, \pi_{2}$ are estimated empirically.

- How do estimates of $\pi_{0}, \pi_{1}, \pi_{2}$ characterize social interactions in the sense of (6)?
$\pi_{2} \neq 0$ is neither necessary nor sufficient for endogenous social interactions to be present, since $J=0$ is neither necessary nor sufficient for $\pi_{2}=0$.
Estimates of (12) are not uninformative; should be mapped to structural parameters in the sense of (6) when identification holds;

A reduced form and standard practice

$$
\begin{gather*}
\omega_{i g}=\frac{k}{1-J}+c x_{i}+\frac{J}{1-J} c \bar{x}_{g}+\frac{d}{1-J} y_{g}+\varepsilon_{i} \tag{11}\\
\omega_{i g}=\pi_{0}+\pi_{1} x_{i}+\pi_{2} y_{g}+\varepsilon_{i} \tag{12}
\end{gather*}
$$

where the parameters $\pi_{0}, \pi_{1}, \pi_{2}$ are estimated empirically.

- How do estimates of $\pi_{0}, \pi_{1}, \pi_{2}$ characterize social interactions in the sense of (6)?
$\pi_{2} \neq 0$ is neither necessary nor sufficient for endogenous social interactions to be present, since $J=0$ is neither necessary nor sufficient for $\pi_{2}=0$.
Estimates of (12) are not uninformative; should be mapped to structural parameters in the sense of (6) when identification holds;
if identification does not hold, what does (12) imply about distinoulshino tynes of social interactions?

Social reflection and identification of the linear-in-means model

- Manski (1993) identification can fail for the linear in means model when one focuses on the mapping from reduced form regression parameters to the structural parameters.

characteristics
- Equ. (10) becomes:

m_{g} in equation (6) linearly dependent on the constant and y_{g}
- Reflection problem: $\omega_{\text {ig }}$ is correlated with the expected average behavior in a neighborhood; From (13): Could it be m_{g} may simply reflect the role of y_{g} in

Social reflection and identification of the linear-in-means model

- Manski (1993) identification can fail for the linear in means model when one focuses on the mapping from reduced form regression parameters to the structural parameters.
Manski's original assumption: $y_{g}=\bar{x}_{g}$,
i.e., contextual effects $=$ average of corresponding individual characteristics.
- Equ. (10) becomes:

$$
\begin{equation*}
m_{g}=\frac{k+(c+d) y_{g}}{1-J} \tag{13}
\end{equation*}
$$

m_{g} in equation (6) linearly dependent on the constant and y_{g}.

- Reflection problem: $\omega_{i g}$ is correlated with the expected average behavior in a neighborhood;
From (13): Could it be m_{g} may simply reflect the role of y_{g} in inflıoncing individuale rathor than it itcolf

Social reflection and identification of the linear-in-means model

- Manski (1993) identification can fail for the linear in means model when one focuses on the mapping from reduced form regression parameters to the structural parameters.
Manski's original assumption: $y_{g}=\bar{x}_{g}$,
i.e., contextual effects $=$ average of corresponding individual characteristics.
- Equ. (10) becomes:

$$
\begin{equation*}
m_{g}=\frac{k+(c+d) y_{g}}{1-J} \tag{13}
\end{equation*}
$$

m_{g} in equation (6) linearly dependent on the constant and y_{g}.

- Reflection problem: $\omega_{i g}$ is correlated with the expected average behavior in a neighborhood;
From (13): Could it be m_{g} may simply reflect the role of y_{g} in inflıoncing individuale rathor than it itcolf

Social reflection and identification of the linear-in-means model

- Manski (1993) identification can fail for the linear in means model when one focuses on the mapping from reduced form regression parameters to the structural parameters.
Manski's original assumption: $y_{g}=\bar{x}_{g}$,
i.e., contextual effects $=$ average of corresponding individual characteristics.
- Equ. (10) becomes:

$$
\begin{equation*}
m_{g}=\frac{k+(c+d) y_{g}}{1-J} \tag{13}
\end{equation*}
$$

m_{g} in equation (6) linearly dependent on the constant and y_{g}.

- Reflection problem: $\omega_{i g}$ is correlated with the expected average behavior in a neighborhood;
From (13): Could it be m_{g} may simply reflect the role of y_{g} in inflıoncing individuale rathor than it itcolf

Social reflection and identification of the linear-in-means model

- Manski (1993) identification can fail for the linear in means model when one focuses on the mapping from reduced form regression parameters to the structural parameters.
Manski's original assumption: $y_{g}=\bar{x}_{g}$,
i.e., contextual effects $=$ average of corresponding individual characteristics.
- Equ. (10) becomes:

$$
\begin{equation*}
m_{g}=\frac{k+(c+d) y_{g}}{1-J} \tag{13}
\end{equation*}
$$

m_{g} in equation (6) linearly dependent on the constant and y_{g}.

- Reflection problem: $\omega_{i g}$ is correlated with the expected average behavior in a neighborhood;
From (13): Could it be m_{g} may simply reflect the role of y_{g} in inflıoncing individuale rathor than it itcolf

identification?

- Identification in the linear in means model. The
parameters k, c, J and d are identified if and only if $\operatorname{proj}\left\{\bar{\omega}_{g} \mid 1, y_{g}, \bar{x}_{g}\right\}-\operatorname{proj}\left\{\bar{\omega}_{g} \mid 1, y_{g}\right\} \neq 0$.
- Partial linear-in-means:

$$
\begin{equation*}
\omega_{i g}=k+c x_{i}+d y_{g}+J \mu\left(m_{g}\right)+\varepsilon_{i} \tag{15}
\end{equation*}
$$

Brock and Durlauf identification functional form of $\mu\left(m_{g}\right)$
known.

- Dynamic linear models:

$$
\begin{equation*}
\omega_{i g t}=k+c x_{i t}+d y_{g t}+\beta m_{g t-1}+\varepsilon_{i t} \tag{16}
\end{equation*}
$$

- Exogenous group sizes, variance-based methods:

identification?

- Identification in the linear in means model. The parameters k, c, J and d are identified if and only if $\operatorname{proj}\left\{\bar{\omega}_{g} \mid 1, y_{g}, \bar{x}_{g}\right\}-\operatorname{proj}\left\{\bar{\omega}_{g} \mid 1, y_{g}\right\} \neq 0$.
- Partial linear-in-means:

$$
\begin{equation*}
\omega_{i g}=k+c x_{i}+d y_{g}+J \mu\left(m_{g}\right)+\varepsilon_{i} . \tag{15}
\end{equation*}
$$

Brock and Durlauf identification functional form of $\mu\left(m_{g}\right)$ known.

- Dynamic linear models:

- Exogenous group sizes, variance-based methods:

identification?

- Identification in the linear in means model. The parameters k, c, J and d are identified if and only if $\operatorname{proj}\left\{\bar{\omega}_{g} \mid 1, y_{g}, \bar{x}_{g}\right\}-\operatorname{proj}\left\{\bar{\omega}_{g} \mid 1, y_{g}\right\} \neq 0$.
- Partial linear-in-means:

$$
\begin{equation*}
\omega_{i g}=k+c x_{i}+d y_{g}+J \mu\left(m_{g}\right)+\varepsilon_{i} . \tag{15}
\end{equation*}
$$

Brock and Durlauf identification functional form of $\mu\left(m_{g}\right)$ known.

- Dynamic linear models:

$$
\begin{equation*}
\omega_{i g t}=k+c x_{i t}+d y_{g t}+\beta m_{g t-1}+\varepsilon_{i t} \tag{16}
\end{equation*}
$$

- Exogenous group sizes, variance-based methods:

identification?

- Identification in the linear in means model. The parameters k, c, J and d are identified if and only if $\operatorname{proj}\left\{\bar{\omega}_{g} \mid 1, y_{g}, \bar{x}_{g}\right\}-\operatorname{proj}\left\{\bar{\omega}_{g} \mid 1, y_{g}\right\} \neq 0$.
- Partial linear-in-means:

$$
\begin{equation*}
\omega_{i g}=k+c x_{i}+d y_{g}+J \mu\left(m_{g}\right)+\varepsilon_{i} . \tag{15}
\end{equation*}
$$

Brock and Durlauf identification functional form of $\mu\left(m_{g}\right)$ known.

- Dynamic linear models:

$$
\begin{equation*}
\omega_{i g t}=k+c x_{i t}+d y_{g t}+\beta m_{g t-1}+\varepsilon_{i t} \tag{16}
\end{equation*}
$$

- Exogenous group sizes, variance-based methods:

$$
\begin{equation*}
\operatorname{var}\left(\omega_{g}\right)=\left(I_{n_{g}}-\frac{J}{n_{g}} \iota_{n_{g}}\right)^{-2} \sigma_{\varepsilon}^{2} \tag{29}
\end{equation*}
$$

identification?

- Identification in the linear in means model. The parameters k, c, J and d are identified if and only if $\operatorname{proj}\left\{\bar{\omega}_{g} \mid 1, y_{g}, \bar{x}_{g}\right\}-\operatorname{proj}\left\{\bar{\omega}_{g} \mid 1, y_{g}\right\} \neq 0$.
- Partial linear-in-means:

$$
\begin{equation*}
\omega_{i g}=k+c x_{i}+d y_{g}+J \mu\left(m_{g}\right)+\varepsilon_{i} . \tag{15}
\end{equation*}
$$

Brock and Durlauf identification functional form of $\mu\left(m_{g}\right)$ known.

- Dynamic linear models:

$$
\begin{equation*}
\omega_{i g t}=k+c x_{i t}+d y_{g t}+\beta m_{g t-1}+\varepsilon_{i t} \tag{16}
\end{equation*}
$$

- Exogenous group sizes, variance-based methods:

$$
\begin{equation*}
\operatorname{var}\left(\omega_{g}\right)=\left(I_{n_{g}}-\frac{J}{n_{g}} \iota_{n_{g}}\right)^{-2} \sigma_{\varepsilon}^{2} \tag{29}
\end{equation*}
$$

identification, continued

- Panel data

$$
\begin{align*}
& \omega_{i g t}-\omega_{i g t-1}=c\left(x_{i t}-x_{i t-1}\right)+d\left(y_{g t}-y_{g t-1}\right) \\
& {[3 p t]+J\left(m_{g t}-m_{g t-1}\right)+\varepsilon_{i t}-\varepsilon_{i t-1} .} \tag{32}
\end{align*}
$$

Why does identification matter?

- Datcher (1982)
- Distinguish c, d, J.
- We know students learn from one another; should we mix them or separate ("track") them?
- For many policy contexts, the structural model is of no intrinsic interest. Brock, Durlauf and West (2003) argue that this is the case for a range of macroeconomic contexts. If policies are available to influence y_{g}, then these interactions can be identified even if the structural parameters are not identified
- endogenous social interactions of fundamental policy relevance, like when affect the distribution of individuals across groups.
- Then group, i.e. neighborhood choice, self-selection new layer of complexity

Why does identification matter?

- Datcher (1982)
- Distinguish c, d, J.
- We know students learn from one another; should we mix them or separate ("track") them?
- For many policy contexts, the structural model is of no intrinsic interest. Brock, Durlauf and West (2003) argue that this is the case for a range of macroeconomic contexts. If policies are available to influence y_{g}, then these interactions can be identified even if the structural parameters are not identified
- endogenous social interactions of fundamental policy relevance, like when affect the distribution of individuals across groups.
- Then group, i.e. neighborhood choice, self-selection new layer of complexity

Why does identification matter?

- Datcher (1982)
- Distinguish c,d, J.
- We know students learn from one another; should we mix them or separate ("track") them?
- For many policy contexts, the structural model is of no intrinsic interest. Brock, Durlauf and West (2003) argue that this is the case for a range of macroeconomic contexts. If policies are available to influence y_{g}, then these interactions can be identified even if the structural parameters are not identified.
- endogenous social interactions of fundamental policy relevance, like when affect the distribution of individuals across groups. of complexity

Why does identification matter?

- Datcher (1982)
- Distinguish c, d, J.
- We know students learn from one another; should we mix them or separate ("track") them?
- For many policy contexts, the structural model is of no intrinsic interest. Brock, Durlauf and West (2003) argue that this is the case for a range of macroeconomic contexts. If policies are available to influence y_{g}, then these interactions can be identified even if the structural parameters are not identified.
- endogenous social interactions of fundamental policy relevance, like when affect the distribution of individuals across groups.
of complexity

Why does identification matter?

- Datcher (1982)
- Distinguish c, d, J.
- We know students learn from one another; should we mix them or separate ("track") them?
- For many policy contexts, the structural model is of no intrinsic interest. Brock, Durlauf and West (2003) argue that this is the case for a range of macroeconomic contexts. If policies are available to influence y_{g}, then these interactions can be identified even if the structural parameters are not identified.
- endogenous social interactions of fundamental policy relevance, like when affect the distribution of individuals across groups.
- Then group, i.e. neighborhood choice, self-selection new layer of complexity

Why does identification matter?

- Datcher (1982)
- Distinguish c, d, J.
- We know students learn from one another; should we mix them or separate ("track") them?
- For many policy contexts, the structural model is of no intrinsic interest. Brock, Durlauf and West (2003) argue that this is the case for a range of macroeconomic contexts. If policies are available to influence y_{g}, then these interactions can be identified even if the structural parameters are not identified.
- endogenous social interactions of fundamental policy relevance, like when affect the distribution of individuals across groups.
- Then group, i.e. neighborhood choice, self-selection new layer of complexity

Self-selection

- treat group choice and behavior within a group as a set of joint outcomes, and conduct empirical analysis from the perspective of both behaviors.
Brock and Durlauf (2001b) first recognized this possibility and studied the case of self-selection between two groups; Brock and Durlauf (2002; 2006) and loannides and Zabel (2008) extended this analysis to an arbitrary finite number of groups.
- Heckman (1979) reasoning, individuals choosing among groups $g=1, \ldots, G$ based on an overall individual-specific quality measure for each group:

$$
\begin{equation*}
l_{i g}^{*}=\gamma_{1} x_{i}+\gamma_{2} y_{g}+\gamma_{3} z_{i g}+\nu_{i g} \tag{39}
\end{equation*}
$$

where: $z_{i g}$ denotes those observable characteristics that influence i 's evaluation of group g but are not direct determinants of ω_{i} and $\nu_{i g}$ denotes an unobservable individıal_cnerific ornun auality term

Self-selection

- treat group choice and behavior within a group as a set of joint outcomes, and conduct empirical analysis from the perspective of both behaviors.
Brock and Durlauf (2001b) first recognized this possibility and studied the case of self-selection between two groups; Brock and Durlauf (2002; 2006) and loannides and Zabel (2008) extended this analysis to an arbitrary finite number of groups.
- Heckman (1979) reasoning, individuals choosing among groups $g=1, \ldots, G$ based on an overall individual-specific quality measure for each group:

$$
\begin{equation*}
l_{i g}^{*}=\gamma_{1} x_{i}+\gamma_{2} y_{g}+\gamma_{3} z_{i g}+\nu_{i g} \tag{39}
\end{equation*}
$$

where: $z_{i g}$ denotes those observable characteristics that influence i 's evaluation of group g but are not direct determinants of ω_{i} and $\nu_{i g}$ denotes an unobservable individıal_cnerific ornun auality term

Self-selection, continued

- Individual i chooses the group with the highest $l_{i g}^{*}$. We assume that prior to group formation, for all i and g, $\mathrm{E}\left(\varepsilon_{i} \mid x_{i}, y_{g}, z_{i g}\right)=0$ and $\mathrm{E}\left(\nu_{i g} \mid \xi, y_{g}, z_{i g}\right)=0$.
- Estimate

$$
\begin{equation*}
\omega_{i g}=c x_{i}+d y_{g}+J m_{g}+\mathrm{E}\left(\varepsilon_{i} \mid x_{i}, \bar{x}_{1}, y_{1}, z_{i 1}, \ldots, \bar{x}_{G}, y_{G}, z_{i G}, i \in g\right)+\xi_{i} \tag{38}
\end{equation*}
$$

where by construction the Heckman error correction term, $\mathrm{E}\left(\xi_{i} \mid x_{i}, \bar{x}_{1}, y_{1}, z_{i 1}, \ldots, \bar{x}_{G}, y_{G}, z_{i G}, i \in g\right)=0$.
groups in the choice set. This is natural since the
characteristics of those groups not chosen are informative about the errors.

Self-selection, continued

- Individual i chooses the group with the highest $l_{i g}^{*}$. We assume that prior to group formation, for all i and g, $\mathrm{E}\left(\varepsilon_{i} \mid x_{i}, y_{g}, z_{i g}\right)=0$ and $\mathrm{E}\left(\nu_{i g} \mid \xi, y_{g}, z_{i g}\right)=0$.
- Estimate

$$
\begin{equation*}
\omega_{i g}=c x_{i}+d y_{g}+J m_{g}+\mathrm{E}\left(\varepsilon_{i} \mid x_{i}, \bar{x}_{1}, y_{1}, z_{i 1}, \ldots, \bar{x}_{G}, y_{G}, z_{i G}, i \in g\right)+\xi_{i} \tag{38}
\end{equation*}
$$

where by construction the Heckman error correction term, $\mathrm{E}\left(\xi_{i} \mid x_{i}, \bar{x}_{1}, y_{1}, z_{i 1}, \ldots, \bar{x}_{G}, y_{G}, z_{i G}, i \in g\right)=0$.

- Notice that the conditioning includes the characteristics of all groups in the choice set. This is natural since the characteristics of those groups not chosen are informative about the errors.

A binary choice model of social interactions

$$
\begin{equation*}
V_{i}(1)-V_{i}(-1)=k+c x_{i}+d y_{g}+J m_{i g}^{e}-\varepsilon_{i} . \tag{59}
\end{equation*}
$$

- Individual i chooses +1 iff $V_{i}(1)-V_{i}(-1) \geq 0$.

$$
\mu\left(\omega_{i}=1 \mid x_{i}, y_{g}, i \in g\right)=F_{\varepsilon}\left(k+c x_{i}+d y_{g}+J m_{i g}^{e}\right) .
$$

- Close by imposing an equilibrium condition on beliefs: expected value of the average choice level in the population is given by

$$
\begin{equation*}
m_{g}=2 \int F_{\varepsilon}\left(k+c x+d y_{g}+J m_{g}\right) d F_{x \mid g}-1 \tag{62}
\end{equation*}
$$

- Nonlinearity facilitates identification. Brock and Durlauf (2001a, 2007). Here is why.

A binary choice model of social interactions

$$
\begin{equation*}
V_{i}(1)-V_{i}(-1)=k+c x_{i}+d y_{g}+J m_{i g}^{e}-\varepsilon_{i} . \tag{59}
\end{equation*}
$$

- Individual i chooses +1 iff $V_{i}(1)-V_{i}(-1) \geq 0$.

$$
\mu\left(\omega_{i}=1 \mid x_{i}, y_{g}, i \in g\right)=F_{\varepsilon}\left(k+c x_{i}+d y_{g}+J m_{i g}^{e}\right)
$$

- Close by imposing an equilibrium condition on beliefs: expected value of the average choice level in the population is given by

$$
\begin{equation*}
m_{g}=2 \int F_{\varepsilon}\left(k+c x+d y_{g}+J m_{g}\right) d F_{x \mid g}-1 \tag{62}
\end{equation*}
$$

A binary choice model of social interactions

$$
\begin{equation*}
V_{i}(1)-V_{i}(-1)=k+c x_{i}+d y_{g}+J m_{i g}^{e}-\varepsilon_{i} . \tag{59}
\end{equation*}
$$

- Individual i chooses +1 iff $V_{i}(1)-V_{i}(-1) \geq 0$.

$$
\mu\left(\omega_{i}=1 \mid x_{i}, y_{g}, i \in g\right)=F_{\varepsilon}\left(k+c x_{i}+d y_{g}+J m_{i g}^{e}\right)
$$

- Close by imposing an equilibrium condition on beliefs: expected value of the average choice level in the population is given by

$$
\begin{equation*}
m_{g}=2 \int F_{\varepsilon}\left(k+c x+d y_{g}+J m_{g}\right) d F_{x \mid g}-1 \tag{62}
\end{equation*}
$$

- Nonlinearity facilitates identification. Brock and Durlauf (2001a, 2007). Here is why.

binary choice model of social interactions, continued

- The reason why d and J are identified is that the unbounded support on the y_{g} element with a nonzero coefficient ensures that m_{g} and y_{g} cannot be linearly dependent: $-1<m_{g}<1$. Bounds not driven by any functional form assumption but follows from the fact that the expected choice values are functions of the choice probabilities, bounded between within $[0,1]$.

2006)

See loannides and Zabel (2008) for an application in neighborhood choice and housing demand.

binary choice model of social interactions, continued

- The reason why d and J are identified is that the unbounded support on the y_{g} element with a nonzero coefficient ensures that m_{g} and y_{g} cannot be linearly dependent: $-1<m_{g}<1$. Bounds not driven by any functional form assumption but follows from the fact that the expected choice values are functions of the choice probabilities, bounded between within $[0,1]$.
- Extend to multinomial choice: Brock and Durlauf (2002; 2006)

See Ioannides and Zabel (2008) for an application in neighborhood choice and housing demand.

binary choice model of social interactions, continued

- The reason why d and J are identified is that the unbounded support on the y_{g} element with a nonzero coefficient ensures that m_{g} and y_{g} cannot be linearly dependent: $-1<m_{g}<1$. Bounds not driven by any functional form assumption but follows from the fact that the expected choice values are functions of the choice probabilities, bounded between within $[0,1]$.
- Extend to multinomial choice: Brock and Durlauf (2002; 2006)

See loannides and Zabel (2008) for an application in neighborhood choice and housing demand.

Social Interactions in Social Networks

- A social network is a graph (V, E) where V is the set of individuals and the directed edges in E signify social influence: (i, j) is in E if and only if j influences i.
Can be represented by adjacency matrix A, or sociomatrix: $n_{V} \times n_{V}$ matrix, one row and one column for each individual in V. For each pair of individuals i and $j, a_{i j}=1$ if there is an edge from i to j, and 0 otherwise. $a_{i i}=0$
- Identification in social networks: key works Cohen-Cole (2006): influences from different peer groups De Giorgi, Pellizari, and Redaelli (2010); Bramoulleé, Djebbari and Fortin (2009), Lee, Liu and Lin (2010), Lin (2010)
- Synthesis of existing results, with given adjacency matrix A.
- Original results, with unknown network structure (adjacency matrix A)

Social Interactions in Social Networks

- A social network is a graph (V, E) where V is the set of individuals and the directed edges in E signify social influence: (i, j) is in E if and only if j influences i.
Can be represented by adjacency matrix A, or sociomatrix: $n_{V} \times n_{V}$ matrix, one row and one column for each individual in V. For each pair of individuals i and $j, a_{i j}=1$ if there is an edge from i to j, and 0 otherwise. $a_{i i}=0$.

- Synthesis of existing results, with given adjacency matrix A. - Original results, with unknown network structure (adjacency matrix A)

Social Interactions in Social Networks

- A social network is a graph (V, E) where V is the set of individuals and the directed edges in E signify social influence:
(i, j) is in E if and only if j influences i.
Can be represented by adjacency matrix A, or sociomatrix: $n_{V} \times n_{V}$ matrix, one row and one column for each individual in V. For each pair of individuals i and $j, a_{i j}=1$ if there is an edge from i to j, and 0 otherwise. $a_{i j}=0$.
- Identification in social networks: key works

Cohen-Cole (2006): influences from different peer groups De Giorgi, Pellizari, and Redaelli (2010); Bramoulleé, Djebbari and Fortin (2009), Lee, Liu and Lin (2010), Lin (2010)

- Original results, with unknown network structure (adjacency

Social Interactions in Social Networks

- A social network is a graph (V, E) where V is the set of individuals and the directed edges in E signify social influence:
(i, j) is in E if and only if j influences i.
Can be represented by adjacency matrix A, or sociomatrix: $n_{V} \times n_{V}$ matrix, one row and one column for each individual in V. For each pair of individuals i and $j, a_{i j}=1$ if there is an edge from i to j, and 0 otherwise. $a_{i j}=0$.
- Identification in social networks: key works Cohen-Cole (2006): influences from different peer groups De Giorgi, Pellizari, and Redaelli (2010); Bramoulleé, Djebbari and Fortin (2009), Lee, Liu and Lin (2010), Lin (2010)
- Synthesis of existing results, with given adjacency matrix A.
- Original results, with unknown network structure (adjacency matrix A)

Identification in social networks with known structure

$$
\begin{gather*}
a_{i j}=\left\{\begin{array}{cc}
\frac{1}{|P(i)|} & \text { if } j \in P(i), \\
0 & \text { otherwise. }
\end{array}\right. \tag{55}\\
\omega_{i}=k+c x_{i}+d \sum_{j \neq i} a_{i j} x_{j}+J \sum_{j} a_{i j} \omega_{j}+\varepsilon_{i} . \tag{47}
\end{gather*}
$$

The reduced form in vector notation:

$$
\begin{equation*}
\omega=k(I-J A)^{-1} \iota+(I-J A)^{-1}(c I+d A) x+(I-J A)^{-1} \varepsilon \tag{49}
\end{equation*}
$$

where I refers to the $n_{V} \times n_{V}$ identity matrix and ι is a $n_{V} \times 1$ vector of 1 's.

Identification in social networks with known structure

- Theorem 2. Identification of social interactions in linear network models
For the social interactions model described by (49), assume that $J c+d \neq 0$ and that for all values of $J \in \mathcal{J},(I-J A)^{-1}$ exists.
i. If the matrices I, A, and A^{2} are linearly independent, then the parameters k, c, d and J are identified.
ii. If the matrices I, A, and A^{2} are linearly dependent, if for all i and $j, \sum_{k} a_{i k}=\sum_{k} a_{j k}$, and if A has no row in which all entries are 0 , then parameters k, c, d and J are not identified.

Identification in social networks with known structure, continued

- Corollary 1. Identification of social interactions in group structures with different-sized groups.
Suppose that individuals act in groups, and that the $a_{i j}$ are given by either inclusive or exclusive averaging. Assume that $J c+d \neq 0$. Then the parameters k, c, d and J are identified if and only if there are at least two groups of different sizes. With inclusive averaging (an individual is a member of his own peer group), the parameters are not identified.
networks model.
\qquad
\qquad
\square the generic identifiability of non-linear narametric models. For

Identification in social networks with known structure, continued

- Corollary 1. Identification of social interactions in group structures with different-sized groups.
Suppose that individuals act in groups, and that the $a_{i j}$ are given by either inclusive or exclusive averaging. Assume that $J c+d \neq 0$. Then the parameters k, c, d and J are identified if and only if there are at least two groups of different sizes. With inclusive averaging (an individual is a member of his own peer group), the parameters are not identified.
- Theorem 5. Generic identifiability of the linear social networks model. The set of all matrices $A \in S$ such that the powers I, A and A^{2} are linearly dependent, is a closed and lower-dimensional (semi-algebraic) subset of S.
This theorem is a complement to McManus' (1992) result on the generic identifiability of non-linear parametric models. For

Identification in social networks with unknown structure

$$
\begin{equation*}
(I-J A) \omega=(c I+d A) x+\varepsilon \tag{54}
\end{equation*}
$$

Classical identification in econometrics

```
where \(\Gamma=I-J A\) and \(B=c l+d A\) for known \(A\)
- Special case: nv agents on a circle; interactions with closest
neighbors.
    \(\Gamma_{i i}=1, \Gamma_{i i-1}=\Gamma_{i i+1}=\gamma_{1}, \forall i, \Gamma_{i j}=0\), otherwise;
        \(B_{i ;}=b_{0}, B_{i ;-1}=B_{i ;+1}=b_{1}, \forall i, B_{i j}=0\).
    Restrictions identify model - Theorem 5.
```


Identification in social networks with unknown structure

$$
\begin{equation*}
(I-J A) \omega=(c I+d A) x+\varepsilon \tag{54}
\end{equation*}
$$

Classical identification in econometrics

$$
\Gamma \omega=B x+\varepsilon,
$$

where $\Gamma=I-J A$ and $B=c l+d A$ for known A

- Special case: n_{V} agents on a circle; interactions with closest neighbors.

$$
\begin{gathered}
\Gamma_{i i}=1, \Gamma_{i i-1}=\Gamma_{i j+1}=\gamma_{1}, \forall i, \Gamma_{i j}=0, \text { otherwise; } \\
B_{i j}=b_{0}, B_{i i-1}=B_{i i+1}=b_{1}, \forall i, B_{i j}=0 .
\end{gathered}
$$

Restrictions identify model - Theorem 5.

Identification in social networks with unknown structure

$$
\begin{equation*}
(I-J A) \omega=(c I+d A) x+\varepsilon \tag{54}
\end{equation*}
$$

Classical identification in econometrics

$$
\Gamma \omega=B x+\varepsilon,
$$

where $\Gamma=I-J A$ and $B=c l+d A$ for known A

- Special case: n_{V} agents on a circle; interactions with closest neighbors.

$$
\begin{gathered}
\Gamma_{i i}=1, \Gamma_{i i-1}=\Gamma_{i j+1}=\gamma_{1}, \forall i, \Gamma_{i j}=0, \text { otherwise; } \\
B_{i j}=b_{0}, B_{i i-1}=B_{i i+1}=b_{1}, \forall i, B_{i j}=0 .
\end{gathered}
$$

Restrictions identify model - Theorem 5.

Identification in social networks with unknown structure

- Special case: circle; with closest neighbors up to distance 2.

$$
\Gamma_{i i}=1, \Gamma_{i i-1}=\Gamma_{i i+1}=\gamma_{1}, \Gamma_{i i-2}=\gamma_{i-2}, \Gamma_{i i+2}=\gamma_{i 2}, \Gamma_{i j}=0 ;
$$

$$
B_{i i}=b_{i 0}, B_{i i-1}=b_{i-1}, B_{i i+1}=b_{i 1}, B_{i i-2}=b_{i-2}, B_{i i+2}=b_{i 2}, B_{i j}=
$$

Identification in social networks with unknown structure

- Special case: circle; with closest neighbors up to distance 2.

$$
\Gamma_{i i}=1, \Gamma_{i i-1}=\Gamma_{i i+1}=\gamma_{1}, \Gamma_{i i-2}=\gamma_{i-2}, \Gamma_{i i+2}=\gamma_{i 2}, \Gamma_{i j}=0 ;
$$

$$
B_{i i}=b_{i 0}, B_{i i-1}=b_{i-1}, B_{i i+1}=b_{i 1}, B_{i i-2}=b_{i-2}, B_{i i+2}=b_{i 2}, B_{i j}=
$$

- Special case: n_{V} agents on a circle, geometric weighting

$$
\begin{align*}
\omega_{i}=c x_{i}+d \sum_{j \neq i} a_{i j}(\gamma) x_{j}+J \sum_{j \neq i} a_{i j}(\gamma) \omega_{j}+\varepsilon_{i} . \tag{56}\\
A(\gamma)=\left(\begin{array}{cccccccccc}
0 & \gamma & \gamma^{2} & \cdots & \gamma^{k} & \gamma^{k} & \gamma^{k-1} & \ldots & \gamma^{2} & \gamma \\
\gamma & 0 & \gamma & & \cdots & \gamma^{k} & \gamma^{k} & \gamma^{k-1} & \cdots & \gamma^{2} \\
& & & \vdots & & & & & \\
\gamma & \gamma^{2} & \cdots & & & & & \gamma & 0 \\
(57)
\end{array}\right.
\end{align*} .
$$

Identification in social networks with unknown structure

- Theorem 7. Identification of the linear social networks model with weights exponentially declining in distance

Identification in social networks with unknown structure

- Theorem 7. Identification of the linear social networks model with weights exponentially declining in distance Part \mathbf{i} says: Each structural parameter vector is observationally equivalent to at most $2 n_{V}-3$ other structural parameter vectors in the sense that they all generate the same reduced form.
> - Part ii: if there are no social interactions, this imposes sufficiently strong restrictions on the reduced form parameters to identify both c and also requires that the matrix of reduced form parameters is proportional to an identity matrix

Identification in social networks with unknown structure

- Theorem 7. Identification of the linear social networks model with weights exponentially declining in distance Part \mathbf{i} says: Each structural parameter vector is observationally equivalent to at most $2 n_{V}-3$ other structural parameter vectors in the sense that they all generate the same reduced form.
- Part ii: if there are no social interactions, this imposes sufficiently strong restrictions on the reduced form parameters to identify both c and also requires that the matrix of reduced form parameters is proportional to an identity matrix.

Identification

- Create experimental designs such that \bar{x}_{g} does not lie in the span of the elements of y_{g} ?
- Eliminate unobserved group characteristics by controlling what group members know about each other.
- Group membership can be explicitly controlled, which addresses the self-selection issues.
- Are the actions of interacting agents jointly determined?
- Do statistics other than mean action matter?
- Does topology of interaction matter?
- Virtual vs. actual social interactions? Very relevant for understanding relationships in social media.

Identification

- Create experimental designs such that \bar{x}_{g} does not lie in the span of the elements of y_{g} ?
- Eliminate unobserved group characteristics by controlling what group members know about each other.
- Group membership can be explicitly controlled, which addresses the self-selection issues.
- Are the actions of interacting agents jointly determined?
- Do statistics other than mean action matter?
- Does topology of interaction matter?
- Virtual vs actual social interactions? Very relevant for understanding relationships in social media

Identification

- Create experimental designs such that \bar{x}_{g} does not lie in the span of the elements of y_{g} ?
- Eliminate unobserved group characteristics by controlling what group members know about each other.
- Group membership can be explicitly controlled, which addresses the self-selection issues.
- Are the actions of interacting agents jointly determined?
- Do statistics other than mean action matter?
- Does tonology of interaction matter?
- Virtual vs. actual social interactions? Very relevant for understanding relationships in social media

Identification

- Create experimental designs such that \bar{x}_{g} does not lie in the span of the elements of y_{g} ?
- Eliminate unobserved group characteristics by controlling what group members know about each other.
- Group membership can be explicitly controlled, which addresses the self-selection issues.
- Are the actions of interacting agents jointly determined?
- Do statistics other than mean action matter?
- Does topology of interaction matter?
- Virtual vs. actual social interactions? Very relevant for understanding relationships in social media

Identification

- Create experimental designs such that \bar{x}_{g} does not lie in the span of the elements of y_{g} ?
- Eliminate unobserved group characteristics by controlling what group members know about each other.
- Group membership can be explicitly controlled, which addresses the self-selection issues.
- Are the actions of interacting agents jointly determined?
- Do statistics other than mean action matter?
- Does topology of interaction matter?
- Virtual vs. actual social interactions? Very relevant for understanding relationships in social media

Identification

- Create experimental designs such that \bar{x}_{g} does not lie in the span of the elements of y_{g} ?
- Eliminate unobserved group characteristics by controlling what group members know about each other.
- Group membership can be explicitly controlled, which addresses the self-selection issues.
- Are the actions of interacting agents jointly determined?
- Do statistics other than mean action matter?
- Does topology of interaction matter?

Very relevant for understanding relationships in social media

Identification

- Create experimental designs such that \bar{x}_{g} does not lie in the span of the elements of y_{g} ?
- Eliminate unobserved group characteristics by controlling what group members know about each other.
- Group membership can be explicitly controlled, which addresses the self-selection issues.
- Are the actions of interacting agents jointly determined?
- Do statistics other than mean action matter?
- Does topology of interaction matter?
- Virtual vs. actual social interactions?

Very relevant for understanding relationships in social media.

Identification

- METCO

Angrist and Lang

- Moving to Opportunity (MTO) Housing vouchers, randomly selected families, residents of high-poverty public housing projects.
Randomly allocated between two subgroups:
one received unrestricted vouchers;
and another (the experimental group) vouchers that could only be used in census tracts with poverty rates below 10\%
- Social interaction effects derived from calculations of treatment effects associated with the vouchers.
Kling, Ludwig and Katz: careful to distinguish between
measures of the effects of intent to treat (eligibility for a
voucher)
and treatment on the treated (use of the voucher).

Identification

- METCO

Angrist and Lang

- Moving to Opportunity (MTO)

Housing vouchers, randomly selected families, residents of high-poverty public housing projects.
Randomly allocated between two subgroups:
one received unrestricted vouchers;
and another (the experimental group) vouchers that could only be used in census tracts with poverty rates below 10\%

- Social interaction effects derived from calculations of treatment effects associated with the vouchers. Kling, Ludwig and Katz: careful to distinguish between measures of the effects of intent to treat (eligibility for a voucher) and treatment on the treated (use of the voucher).

Conclusion

- Enormous interest in social networks science and industry
- AddHealth data set But torrents of data becoming available from all kinds of devices of contemporary life It's all about networks and interactions, in physical and social geography
- Integration of social interactions in "From Neighborhoods to Nations."

Conclusion

- Enormous interest in social networks science and industry
- AddHealth data set But torrents of data becoming available from all kinds of devices of contemporary life It's all about networks and interactions, in physical and social geography Nations.

Conclusion

- Enormous interest in social networks science and industry
- AddHealth data set But torrents of data becoming available from all kinds of devices of contemporary life It's all about networks and interactions, in physical and social geography
- Integration of social interactions in "From Neighborhoods to Nations."

Conclusion

- Enormous interest in social networks science and industry
- AddHealth data set But torrents of data becoming available from all kinds of devices of contemporary life It's all about networks and interactions, in physical and social geography
- Integration of social interactions in "From Neighborhoods to Nations."

