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1. SOCIAL INTERACTIONS: THEORY

• Non-market interactions among agents

• Interdependent discrete decisions — Brock and

Durlauf (2001)

• Interdependence has spatial structure: who trades

with whom?

– The overlapping generations model, a specific

topology of interactions

– Patterns of preferential trade arrangements among

countries

2. SOCIAL INTERACTIONS: EMPIRICS

• Structural estimation of systems of discrete deci-

sions

• Variance of community-level aggregates vs. vari-

ance of individual data [ Glaeser and Scheinkman

(2001) ]

• Applications with Continuous Decisions
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SOCIAL STRUCTURE:

I : the set of individuals

G(V,E), an undirected graph: V = {v1, v2, . . . , vI}, set of

vertices, the individuals; E, is the set of edges, a subset

of the collection of unordered pairs of vertices.

Agent i interacts with agent j, if there is an edge between

nodes i and j.

Let ν(i) define the local neighborhood of agent i : ν(i) =

{j ∈ I|j ̸= i, {i, j} ∈ E}.
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STYLIZED TOPOLOGIES OF SOCIAL INTERAC-

TIONS:

• Complete pairwise interactions: ν(i) = I − {i},

graph G is complete, mean-field case

• Walrasian–star, a.k.a. “hub-and-spoke”:

agent 1 interacts with each of all other agents in the

economy, ν(1) = I − {1},

all other agents interact only with agent 1, ν(i) =

1, i ̸= 1.

• Circular interaction: graph G is a cycle

ν(i) = {i− 1, i + 1},∀i ∈ I.

• One-dimensional lattice case, line: I = {−L, . . . , 0, . . . , L}.

ν(i) = {i− 1, i + 1},∀i ∈ I, i ̸= L, i ̸= −L.

ν(L) = {L− 1}, ν(−L) = {−L + 1}
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Stylized Topologies
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The Brock-Durlauf interactive discrete choice model

individual i is decision, state: ωi, ωi ∈ S = {−1, 1}.

ωi = argmax Ui = U(ωi;
∼
ων(i)),

∼
ων(i) denotes vector containing the decisions made by

each of agent i’s nearest neighbors, ν(i).

Ui(ωi) ≡ u(ωi) + ωiEi


1

|ν(i)|
∑

j∈ν(i)
Jijωj

 + ϵ(ωi), (1)

random variable ϵ(ωi), I.I.D. type I extreme-value.

Prob(ωi = 1) =
exp

[
β

(
u(1)− u(−1) + 2Ei

{
1

|ν(i)|
∑
j∈ν(i) Jijωj

})]
1 + exp

[
β

(
u(1)− u(−1) + 2Ei

{
1

|ν(i)|
∑
j∈ν(i) Jijωj

}
]
)],

(2)

β = 0 : purely random choice
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Mean Field Theory

Ei(ωj) = m, (3)

ωi
1

|ν(i)|
∑

JEi(ωj) = ωiJm.

Without loss of generality, h := 1
2(u(1) − u(−1)), h0 :=

1
2(u(1) + u(−1)). Then:

u(ωi) = hωi + h0,

m = tanh(βh + βJm), (4)

where tanh(x), hyperbolic tangent, defined as:

tanh(x) ≡ exp(x)− exp(−x)

exp(x) + exp(−x)
, −∞ < x < ∞.
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mft
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Brock and Durlauf (2001) Theorem: Equ. (4) may have

three or a unique root, depending on parameter values.

Conditional on a given private utility difference be-

tween the choices 1 and −1, which equals 2h, there is a

level which the conformity effect must reach in order to

produce multiple self-consistent mean choice behavior.

However, as βh increases in magnitude, the importance

of the conformity effect βJ diminishes in a relative sense,

and thus becomes unable to produce a self-consistent

mean with the opposite sign.

If there exist three equilibria, we will refer to the

“middle” one (m∗), as symmetric and to the other two

as asymmetric (m∗
−,m

∗
+) [ Figure 1].

Economic fundamentals that drive private decisions and

social norms play complementary roles. Even if private

incentives, expressed by h, favor a particular decision,

sufficiently strong social conformity effects can bring

about equilibria, in which most teenagers conform, say

by dropping out of school.

Individually optimal but collectively undesirable behav-

ior.

Complete pairwise interaction: a way to visualize mean

field theory.
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“WALRASIAN-STAR” INTERACTION:

U1(ω1) ≡ hω1 + ω1JS
1

I − 1
E1


I∑

i=2
ωi

 + ϵ(ω1); (5)

Ui(ωi) ≡ hωi + ωiJEi {ω1} + ϵ(ωi); i = 2, . . . , I. (6)

Ei {ω1} = m1, i = 2, . . . , I ; m−1 = E1{ωi}, i ̸= 1.

m1 = tanh(βh + βJSm−1); (7)

m−1 = tanh(βh + βJm1). (8)

The equilibria in this economy are the fixed points of

the system of (7) and (8).

More possibilities than the mean field case. E.g., if

both interaction coefficients are positive, there is al-

ways at least one root that is in the positive orthant

of (m1,m−1) space: conformism is an equilibrium.
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Walrasian Star
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CIRCULAR INTERACTION:

Ui(ωi) ≡ hωi + ωi
1

2
Ei {JBωi−1 + JFωi+1} + ϵ(ωi). (9)

Under common expectations, mj = Ei {ωj}

mi = tanh[βh +
1

2
β(JBmi−1 + JFmi+1)], i = 1, . . . , I. (10)

I equations in the I unknowns mi, i = 1, . . . , I, with “ini-

tial” conditions mI+1 = m1, and mI+2 = m2.

Two classes of solutions, isotropic and anisotropic ones:

Isotropic solutions of (10) are like the mean field case.

Examination of anisotropic solutions similar to exis-

tence of periodic solutions to nonlinear difference equa-

tions. They exist if I = 3. They are due to the nonlin-

earity of the problem and are “far” from the isotropic

ones.
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One-dimensional lattice (interactions along a line).

Local interaction, but presence of two end agents: do

they make a difference? Consider:

“If everybody needs 100 Watts to read by and a neigh-

bor’s bulb is equivalent to half one’s own, and everybody

has a 60-Watt bulb, everybody can read as long as he

and both his neighbors have their lights on. Arranged

on a circle, everybody will keep his lights on if every-

body else does (and nobody will if his neighbors do not);

arranged in a line, the people at the ends cannot read

anyway and turn their lights off, and the whole thing

unravels” [ Schelling (1978) ].

m−L = tanh[βh + βJFm−L+1]; (11)

mL = tanh[βh + βJBmL−1]. (12)

and Equ. (10), for i = −L + 1, . . . , L− 1.

Again, two classes of solutions, isotropic and anisotropic

ones:

Isotropic solutions of (10) are like the mean field case.

Isotropic solutions for the end agents are obtained in

the obvious way from the isotropic solutions for i = −L+

1, . . . , L− 1.
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REMARKS:

Social equilibrium may be characterized by aggregate

uncertainty, even when individual states are purely ran-

dom. That is, consider the case when h = 0, the two

states equally likely in terms of fundamentals. Then,

even in the mean field case, the economy has three

isotropic equilibria, associated with the roots of Equ.

(4), for h = 0.

m = 0, no aggregate uncertainty.

If βJ > 1, then the other two roots imply aggregate

activity.

Emergence of aggregate activity is due to the syner-

gistic effects operating at the individual level.

“Aggregation is not summation!”
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What if interactions are based on agents’ actual envi-

ronments? A number of interesting results:

• Establish conceptual link with econometrics of sys-

tems of discrete choice models.

• One-dimensional Ising model from statistical mechan-

ics admits a decentralized interpretation, along the

lines of the circular interaction model.
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A GENERAL FRAMEWORK FOR DYNAMICS

The state of the economy at time t,
∼
ωt, depends upon

the actual state of each agent’s neighbors,
∼
ων(i),t−1, that

pertains to agent i’s neighbors.

Prob
{
ωi,t = 1| ∼

ων(i),t−1

}
=

exp
[
βh + β 1

|ν(i)|
∑
j∈ν(i) Jijωj,t−1

]
1 + exp

[
βh + β 1

|ν(i)|
∑
j∈ν(i) Jijωj]

].
(13)

Therefore, for each of the 2I possible realizations of
∼
ωt−1,

∼
ωt−1 ∈ {−1, 1} × . . .× {−1, 1}︸ ︷︷ ︸

I

, Equ. (13) defines condi-

tional choice probabilities for each agent in each of the

models of social interaction.

Transition probabilities from Equ. (13) are in effect

fixed transition probabilities for each of the 2I possible

realizations of
∼
ωt.

Transition probabilities for the dynamic counterparts

of the mean field, Walrasian star, circular interaction

and interaction along a line: follow by adapting Equ.

(13) in the obvious way, according to the definition of

agent i’s neighborhood, ν(i).
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State of the economy: evolves according to a Markov

stochastic process, defined from the finite (but large, if

I is large) sample space {−1, 1} × . . .× {−1, 1}︸ ︷︷ ︸
I

, into itself

and has fixed transition probabilities.

Dependence of the transition probabilities on the spa-

tial details that characterize each of the topologies we

are studying suggests that the process may be non-

ergodic, in general: there may regions of starting values

for each individual in the economy, (basins of attrac-

tion), for which different individuals may converge to

different states.
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DYNAMICS FOR THE STYLIZED TOPOLOGIES:

under MYOPIC EXPECTATIONS.

Definition: each individual’s expectation of her neigh-

bor’s choice at time t is equal to that individual’s expected

choice at time t− 1.

I.e., not actual, as above.

• COMPLETE PAIRWISE: equivalent to mean field

case, examined by Brock and Durlauf.

If there are three isotropic equilibria: symmetric is

unstable; asymmetric ones stable.

• WALRASIAN STAR: qualitatively similar to mean

field case; some additional possibilities, depending

on parameter values.

• CIRCULAR, ONE-DIMENSIONAL LATTICE (IN-

TERACTION ALONG THE LINE): qualitatively dif-

ferent!

Let us see why!
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• DYNAMICS FOR THE CIRCULAR INTERACTION

TOPOLOGY

Using tools proposed by Turing (1952), Glauber (1963):

Local interaction plus circular symmetry introduce

SPATIAL OSCILLATIONS, interpreted as SPATIAL

CLUSTERING, with PERSISTENCE:

if symmetric equilibrium disturbed, some agents will

end up in one asymmetric equilibrium, others at the

other.

• DYNAMICS FOR THE INTERACTION ALONG

THE LINE

Local interaction introduces transitory SPATIAL OS-

CILLATIONS, interpreted as SPATIAL CLUSTER-

ING.

Conclusion: local interaction is responsible for clus-

tering, closure is responsible for persistence.

NOTEWORTHY EXTENSIONS

• Local interaction and global interaction: can be han-

dled with similar tools.

• Extension clearly deserves future research: Link with

economies with interacting agents literature, as stud-

ied by Allan Kirman: allow agents to choose whom

to interact with; examine the speed of adjustment

when agents do have such choice.
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SOCIAL INTERACTIONS: EMPIRICS

Recall:

• A. Structural estimation of systems of discrete deci-

sions

Dependence on expected vs. actual behavior of neigh-

bors: reflects spatial structure.

• B. Variance of individual decisions as function of

variance of individual shocks: depends on topology

of interaction.

• C. Applications with Continuous Decisions

I will emphasize items B and C.
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B. Variance of individual decisions as function of vari-

ance of individual shocks: depends on topology of inter-

action.

Let Wi denote the response, ϵi an individual-specific

shock, I.I.D. Consider linear response rule:

Wi = a +
1

|ν(i)|
J

∑
j∈ν(i)

Wj + ϵi, (14)

• Complete pairwise interaction:

Var(Wi) = σ2
ϵ

1 +
 JP
1− JP

2 3(I − 1)− 2JP (I − 2)− J2
P

(I − 1 + JP )2

 .
(15)

• Circular interaction, with when JF = 0 :

Var(Wi) =
1 + J I

1− J I

σ2
ϵ

1− J2
. (16)

I have successfully estimated such models with hous-

ing consumption data from the neighborhood clusters

subsample of the American Housing Survey; for each

respondent, residential neighbors are also sampled.

Papers may be found at my department’s web page:

http://ase.tufts.edu/econ
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C. Applications with Continuous Decisions

1. INTERGENERATIONAL TRANSMISSION OF HU-

MAN CAPITAL

Fix ideas and set notation with a linear model [ Kre-

mer (1997); Ioannides (2001) ] for the intergenera-

tional transmission of human capital:

Ωit+1 = a0 +
α

2
(ωit + ωi′t) + βων(i)t + ϵi, (17)

where a0 denotes an exogenous intercept, ων(i)t, aver-

age education in the neighborhood of i’s upbringing,

(ωit, ωi′t) parents’ human capital, and ϵi a stochastic

shock.

I have estimated this model with data from Panel

Study of Income Dynamics, augmented with geocoded

data on distribution of human capital within neigh-

borhood of upbringing.

I have obtained significant nonlinear effects, in con-

trast to Kremer (1997), working with parametric and

nonparametric models. Nonlinearity is critical for

multiplicity of equilibria. The effects i have identi-

fied make the time map sigmoid.

My paper is forthcoming in the Drandakis Festschrift,

edited by Bitros and Katsoulakos.
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Simple model admits a broader interpretation: e.g.,

human capital of parents are interdependent through

marital sorting, an important form of social interac-

tions!

Residential sorting, marital sorting and educational

outcomes have yet to be combined empirically.
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2. RESIDENTIAL NEIGHBOR INTERACTIONS

Housing demand by individual i in neighborhood x:

ω = α + βE[ω|x] + E[z|x]′γ + z′η + ϵ, E[ϵ|x, z] = x′δ. (18)

Under Nash equilibrium,

E[ω|x, z] = α

1− β
+ E[z|x]′ 1

1− β
(γ + βη) + z′η + x′

1

1− β
δ.

(19)

The effect of the expected behavior of neighbors, β,

may not be identified separately from the effect of

the expected characteristics of neighbors, γ.

That is, two social effects may not be identified sep-

arately, unless:

• instruments may be found, whereby the neigh-

borhood average of a characteristic, E[z|x], is not

a causal variable;

• or, the model is nonlinear.

The former is hard to do, except paradoxically, when

individuals choose the neighborhoods [ Brock and

Durlauf (2001) ].

So, we see how important nonlinearity is for the iden-

tification of the effects of social interactions.

I have successfully estimated such models with housing con-

sumption data from the neighborhood clusters subsample of

the American Housing Survey; for each respondent, residential

neighbors are also sampled.
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CONCLUSION

• SOCIAL INTERACTIONS:

Theory

Theory of economies with interacting agents: a rich

paradigm.

• SOCIAL INTERACTIONS:

Empirics

Theory is critical for the establishing econometric

identification of impact of social structure on eco-

nomic decisions.

Data sets with contextual information are increas-

ingly available.
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