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ABSTRACT 

This thesis examines how state level energy efficiency resource standards (EERS), 

renewable portfolio standards (RPS), and electric sector deregulation have affected US 

households’ energy burden. “Energy burden” represents the percentage of household income 

that is spent on energy for domestic use, and this analysis defines a related metric that is 

specific to electric purchases. The study posits that most policies have increased electric energy 

burden and employs fixed effects panel regression techniques to test this hypothesis across 105 

private, investor-owned electric utilities and twenty-two years. Utilities’ geographic service 

territories are the analytical units, and a typical household’s electric energy burden is estimated 

for each utility in each year. The results suggest all three policies are associated with increases 

in electric energy burden over time, which corroborates previous research that examined 

electricity prices only. The study concludes with a discussion of avenues for future research that 

would expand upon these results. 

  



  iii 

TABLE OF CONTENTS 

LIST OF FIGURES .............................................................................................................................. iii 

LIST OF TABLES ................................................................................................................................ iv 

GLOSSARY.........................................................................................................................................v 

CHAPTER 1: INTRODUCTION ........................................................................................................... 2 

CHAPTER 2: LITERATURE REVIEW ................................................................................................... 3 
History of Electric Utility Regulation in the United States ........................................................................ 3 
Energy Efficiency Resource Standards (EERS) and Decoupling ............................................................... 11 
Renewable Portfolio Standards (RPS) ..................................................................................................... 17 
Energy Burden and Low Income Assistance Initiatives ........................................................................... 19 

CHAPTER 3: METHODS .................................................................................................................. 22 
Median Household Electric Burden (MHEB) ........................................................................................... 23 
Regression Model and Analytical Approach ........................................................................................... 24 
Addressing Endogeneity .......................................................................................................................... 29 
Data Sources and Data Handling Procedures.......................................................................................... 31 

CHAPTER 4: RESULTS..................................................................................................................... 37 
Summary Statistics .................................................................................................................................. 38 
Combined Policy Effects .......................................................................................................................... 42 
Individual Policy Effects ........................................................................................................................... 47 

CHAPTER 6: CONCLUSION ............................................................................................................. 59 

BIBLIOGRAPHY .............................................................................................................................. 61 

APPENDIX A: ADJUSTMENTS FOR ENDOGENEITY ......................................................................... 65 

APPENDIX B: SUPPLEMENTAL CHARTS AND FIGURES .................................................................. 75 

APPENDIX C: FULL REGRESSION RESULTS AND TESTS FOR JOINT SIGNIFICANCE ........................ 81 
 

LIST OF FIGURES 
 

FIGURE 2.1: Electric Grids Covering the Contiguous United States................................................ 5 
FIGURE 2.2: Independent System Operators of North America ..................................................... 8 
FIGURE 2.3: States with Deregulated Electric Sectors in 2015 ....................................................... 9 
FIGURE 2.4: States with an Electric EERS in 2015 ......................................................................... 14 
FIGURE 2.5: States with Electric Decoupling in 2015.................................................................... 15 
FIGURE 2.6: States with an RPS in 2015 ........................................................................................ 17 
FIGURE 3.1: States With At Least One IOU Included in Analysis .................................................. 37 
FIGURE B.1: Service Territories of Included IOUs and Metro Area Coverage .............................. 80 

 
  



  iv 

LIST OF TABLES 
 

TABLE 3.1: Variables Included in Analysis ..................................................................................... 26 
TABLE 4.1: Summary Statistics ...................................................................................................... 39 
TABLE 4.2: Summary Statistics by Existence of an EERS ............................................................... 40 
TABLE 4.3: Summary Statistics by Existence of an RPS ................................................................. 40 
TABLE 4.4: Summary Statistics by Existence of Deregulation ...................................................... 41 
TABLE 4.5: Combined Policy Regression Outputs ......................................................................... 44 
TABLE 4.6: EERS Regression Outputs ............................................................................................ 48 
TABLE 4.6: RPS Regression Outputs .............................................................................................. 51 
TABLE 4.7: Deregulation Regression Outputs ............................................................................... 53 
TABLE A.1: Random Effects Probit Analysis of EERS Start Year, Model 1 ..................................... 69 
TABLE A.2: Random Effects Probit Analysis of EERS Start Year, Model 2 ..................................... 69 
TABLE A.3: Random Effects Probit Analysis of Decoupling Start Year, Model 1 .......................... 70 
TABLE A.4: Random Effects Probit Analysis of Decoupling Start Year, Model 2 .......................... 70 
TABLE A.5: Random Effects Probit Analysis of RPS Start Year, Model 1 ...................................... 71 
TABLE A.6: Random Effects Probit Analysis of RPS Start Year, Model 2 ...................................... 71 
TABLE A.7: Random Effects Probit Analysis of RPS Start Year, Model 3 ...................................... 72 
TABLE A.8: Random Effects Probit Analysis of Deregulation Start Year, Model 1 ....................... 73 
TABLE A.9: Random Effects Probit Analysis of Deregulation Start Year, Model 2 ....................... 73 
TABLE B.1:  Policy Implementation by State ................................................................................. 75 
TABLE B.2: Included IOUs by State................................................................................................ 77 
TABLE C.1: Baseline and Complete Fitted Models for Combined Analysis, Without Cost Lags ... 82 
TABLE C.2: Tests for Joint Significance in Combined Analysis, Without Cost Lags ....................... 84 
TABLE C.3: Baseline and Complete Fitted Models for Combined Analysis, With Cost Lags ......... 84 
TABLE C.4: Tests for Joint Significance in Combined Analysis, With Cost Lags ............................ 86 
TABLE C.5: Baseline and Complete Fitted Models for EERS Analysis, Without Cost Lags ............ 86 
TABLE C.6: Tests for Joint Significance in EERS Analysis, Without Cost Lags................................ 87 
TABLE C.7: Baseline and Complete Fitted Models for EERS Analysis, With Cost Lags ................. 88 
TABLE C.8: Tests for Joint Significance in EERS Analysis, With Cost Lags ..................................... 89 
TABLE C.9: Baseline and Complete Fitted Models for RPS Analysis, Without Cost Lags .............. 90 
TABLE C.10: Tests for Joint Significance in RPS Analysis, Without Cost Lags ............................... 92 
TABLE C.11: Baseline and Complete Fitted Models for Deregulation Analysis, Without Cost Lags

............................................................................................................................................... 92 
TABLE C.12: Tests for Joint Significance in Deregulation Analysis, Without Cost Lags ................ 93 

  



  v 

GLOSSARY 

C&I: Commercial and Industrial 

DSM: Demand Side Management 

EERS: Energy Efficiency Resource Standard 

ERCOT: Electric Reliability Council of Texas 

FERC: Federal Energy Regulatory Commission 

IOU: Investor-Owned Utility 

ISO: Independent System Operator (equivalent to RTO) 

LIHEAP: Low Income Home Energy Assistance Program 

LMI: low- and moderate-income 

LRAM: Lost Revenue Adjustment Mechanism 

MWh: Megawatt-hour 

OASIS: Open Access Same-Time Information System 

PURPA: Public Utility Regulatory Policies Act of 1978 

RPS: Renewable Portfolio Standard 

RTO: Regional Transmission Operator (equivalent to ISO) 

SBC: System Benefits Charge 

T&D: Transmission and Distribution 
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CHAPTER 1: INTRODUCTION 

In the early 1990s, US states began to upend the traditional paradigm of electric service 

provision that had been in place for nearly a century. Spurred by regulatory changes on the 

federal level, as well as by a desire to promote cleaner energy sources and to introduce 

competition into the electric industry, states began adopting measures that altered 

longstanding business models, expanded the number of players in the sector, and allowed 

consumers greater control over their purchasing decisions. The most prominent new policies 

were energy efficiency resource standards (EERS), renewable portfolio standards (RPS), and 

deregulation of the power sector, which respectively promoted consumer energy efficiency, 

generation from renewable sources, and competition in electric generation and retailing. 

Numerous studies over the past two decades have analyzed the effects of these nationwide 

experiments, with results that often conflict ideologically, if not mathematically. 

With respect to consumers, the literature focuses largely on how electric rates have 

changed in response to policy implementation. Yet It is not sufficient to consider only on how 

these policies have affected rates, since rates are only one piece in the larger puzzle of costs. 

Another metric that is particularly relevant to residential electricity consumers is “energy 

burden,” which measures the percentage of a household’s income that is devoted to energy 

purchases. In this study, I define a new measure of energy burden – median household electric 

burden (MHEB) – that specifically describes how much a typical household spends on electricity 

in a given year. I then perform a series of fixed effects econometric analyses to determine 

whether and how the policies described above have affected US households on average.  
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Public policy is about more than numbers and targets – it is about people. In this study, I 

attempt to merge the policy impacts and energy burden literatures to explore a new angle of 

the electric system upheaval of the past two decades. I focus on energy burden to show how 

documented changes in the costs faced by electric consumers relate to overall income, with a 

view towards the low- and median-income (LMI) consumers who, as previous research has 

shown, already tend to pay more for their electricity. If well-intentioned policies have 

inadvertently increased energy burden without providing relief for those consumers who are 

most drastically affected, then policymakers and regulators must recognize and address this 

disparity. I hope this analysis will illuminate pathways for future research that openly reviews 

the successes and failures of recent energy policy and, in doing so, points to solutions that 

address critical environmental needs while ensuring equitable access to energy for all members 

of society. 

CHAPTER 2: LITERATURE REVIEW 

 This chapter describes the historical and political context of the state energy policies 

considered in this study, including the results of previous research exploring their effects on 

electric rates. The first three sections below consider each of the policies in turn. The fourth 

section outlines the concept of “energy burden,” which is central to the main analysis in 

Chapter 4.  

History of Electric Utility Regulation in the United States 
 

Since electrification began in the early twentieth century, the primary model for electric 

service in the United States has been vertical integration. Under this system, a utility company 

owns and operates the entire electric infrastructure – from generating plants to intra- and 
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interstate transmission lines to local distribution networks – within a defined geographic 

territory (Hickey and Carlson 2010), and it is the sole provider of electric service within that 

territory. This model stems from the nature of utilities as natural monopolies. Given economies 

of scale and the enormous amount of land and capital infrastructure involved in electric service 

provision, it is considerably more cost effective to grant one company exclusive jurisdiction 

than to allow several competitors to build parallel networks and attempt individual cost 

recovery (Ventosa, Linares, and Pérez-Arriaga 2013). Yet as natural monopolies, utilities are 

subject to the same pressure towards underproduction and overpricing faced by profit-

maximizing monopoly firms in other markets.  

Responsibility for regulating these monopolies – referred to as “investor-owned utilities 

(IOUs)” from now on – has traditionally fallen to the states (Joskow 2005). The state agencies 

with jurisdiction over electric utilities (and often over other monopoly network services such as 

natural gas, water, landline phones, and internet) generally have names such as “Public Utility 

Commission,” “Public Service Commission,” or “Commerce Commission” and are empowered 

to “[e]nsure that rates, terms, and conditions established for public service companies are just, 

reasonable, and transparent” (Maryland Public Service Commission 2017, 1). In so doing, they 

also allow utilities to recoup costs and therefore to remain financially stable enough to attract 

private investment (Hickey and Carlson 2010). Several other types of electric service provider 

have also come into being around the country, including federal generators and wholesalers 

(e.g. the Tennessee Valley Authority and the Bonneville Power Administration), state-owned 

service providers (e.g. the New York Power Authority), rural electric cooperatives, and 

municipal electric companies. Though these entities are subject to varying degrees of board or 
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municipal oversight, they generally are not answerable to state utility commissions in the same 

way as IOUs. 

The electric transmission system in the forty-eight contiguous states is divided between 

three separate grids – the Eastern, Western, and Texas (ERCOT) Interconnections – and each 

utility’s service area represents a component of one of these grids (Joskow 2005). As shown in 

Figure 2.1, the Eastern and Western Interconnections span multiple states, as well as parts of 

Canada and Mexico, and interstate transactions on these grids are subject to federal regulation 

(FERC 2016). The Federal Energy Regulatory Commission (FERC) oversees electric transmission 

between states in accordance with the Federal Power Act of 1935 (Joskow 2005); FERC itself 

was originally constituted by the Federal Power Act of 1920 and received its current name in 

the 1977. FERC also has jurisdiction over contracted sales of power between utilities within and 

amongst states, which constituted the primary instruments of transmission between utility 

service territories prior to restructuring efforts that began in the late 1970s (Joskow 2005).  

FIGURE 2.1: Electric Grids Covering the Contiguous United States 

 
Source: John A. Dutton e-Education Institute (2017) 



  6 

 

 After a series of oil price shocks that rattled confidence in the prevailing electric system, 

Congress passed the Public Utility Regulatory Policies Act (PURPA) of 1978, which required that 

utilities buy power from the cheapest available sources, even if those sources were not their 

own generators (Union of Concerned Scientists 2016). These independent producers tended to 

be fossil fuel co-generation plants and renewable energy facilities (Joskow 2005). Congress 

further promoted restructuring with the Energy Policy Act of 1992, which loosened regulations 

on utilities owning independent generators and bolstered FERC’s ability to require that utilities 

open their transmission infrastructure to others in support of trade (Joskow 2005, 102).  

The trend towards a new paradigm for both electric and natural gas provision also found 

its way into state policy, starting with California in 1994 (Nadel and Kushler 2000). States began 

to require that electric utilities sell off their generation assets (power plants) to promote 

competition in electricity production (Hickey and Carlson 2010). Wielding its authority in 

support of PURPA and state level deregulation, FERC moved to enshrine greater access to 

transmission infrastructure in the US Code through its simultaneous rulemakings Order 888 and 

Order 889 in 1996 (Joskow 2005). The first of these required that utilities file tariffs with FERC 

that explicitly delineate the transmission services they will offer (and at what prices), whereas 

the second required that transmission owners develop Open Access Same-Time Information 

Systems (OASIS) – alone in conjunction with others – that would make both tariffs and system 

conditions publicly available in real time (Ibid.). Thus, FERC’s intent was to inject transparency 

and consistency into services that utilities had been providing to each other for years, but which 

would now be opened to a much wider customer base.  
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Joskow (2005) notes that the creation of interstate wholesale markets for electricity was 

FERC’s long-term goal, and after the passage of Orders 888 and 889, the agency strongly 

encouraged utilities in California and the Northeast to transform less formal sales agreements 

(power pools) in which they had participated since the 1960s into formal independent system 

operators (ISOs) with jurisdiction over load dispatch, planning, voluntary markets, and other 

areas (105). Utilities in these regions complied, followed by many in other parts of the country, 

and FERC issued Order 2000 in 1999 to set rules for ISOs that included development standards, 

operation of OASIS systems, and a requirement that participating utilities hand over operation 

of their transmission infrastructure to the ISO (Joskow 2005). Yet Joskow (2005) also stresses 

that the national electric system is still far from integrated, as neither states nor FERC have 

oversight over all transactions, ISOs have the authority to operate markets but do not 

necessarily own the relevant transmission infrastructure, and there are “no clear and coherent 

national laws that adopt a competitive wholesale and retail market model as national policy 

and that give federal authorities the tools to do the necessary restructuring and wholesale 

market design work required to make it work” (96). Figure 2.2 depicts the ISOs in existence 

today (also known as Regional Transmission Operators or RTOs), which cover many states that 

have deregulated their internal electric sectors and several that have not. 
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FIGURE 2.2: Independent System Operators of North America 

 
Source: ISO/RTO Council (2015) 

 State level deregulation has generally pushed beyond divestment of generation assets 

(and participation in wholesale markets) to allow individual customers to choose their energy 

supplier. In such cases, rather than receiving “bundled” service from the utility that includes 

both energy and network (transmission and distribution) components, the customer may elect 

to purchase electricity from a third party while still paying the local utility to physically deliver 

that electricity through its network. Third parties might be power plants – if the consumer is 

large enough to sign a long-term contract – or they might be retailers participating in real-time 

wholesale markets (Woo et al. 2006). States that had deregulated their electric sectors by 2015 

are depicted in Figure 2.3. 
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FIGURE 2.3: States with Deregulated Electric Sectors in 2015 

 
*Deregulation in Texas only applies to IOUs within the ERCOT region (see Figure 2.1). 
Map produced by author. Data sources: Electric Choice (2016), Stanford University (2003), Swadley and Yücel 
(2011) 

 

Deregulation has not been a smooth process, and the results appear to be mixed. For 

one thing, actions by ENRON and other firms to artificially inflate prices in the California market 

caused a severe power crisis in that state during 2000 and 2001, which in turn curbed 

enthusiasm for deregulation in other states (Joskow 2005; Woo et al. 2006). Axelrod, DeRamus, 

and Cain (2006) argue that deregulation enabled efficiency improvements in plant construction 

and maintenance, as well as greater access to low-cost generation. Woo et al. (2006) point out, 

on the other hand, that efficiency gains were partly due to utility layoffs and that reliability 

(reserve capacity) requirements make arguments for cutting expenditures less realistic. 

Oppenheim and MacGregor (2003) similarly note that closures of utility field offices contributed 

to this efficiency gain.  
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For those consumers that choose to remain with their utility rather than shop for 

another retailer, the pass-through of prices depends largely on the local regulatory scheme. 

Traditional cost-of-service regulation generally allows distribution utilities to recoup all costs 

from ratepayers at a later date, whereas more recent “efficiency based” approaches, such as 

RPI-X, encourage efficiency and break the direct pipeline from costs to rates (for a 

comprehensive discussion of various regulatory approaches to distribution, see Gómez 2013). 

Yet particularly for those consumers who began choosing new suppliers, deregulation upended 

the standard ratemaking scheme. Axelrod, DeRamus, and Cain (2006) note that divestment of 

generation assets rightly transferred some cost risk from consumers to investors. This shift 

brought electric provision more in line with other (imperfectly) competitive sectors of the 

economy, where recent scholarship has shown that cost swings are only partially commuted 

from producers to consumers (Ganapati, Shapiro, and Walker 2016). 

In the early years at least, the inelasticity of hourly demand for electricity caused large 

price swings in spot markets, which in combination with the spread of risk to investors raised 

concerns that generation investment would fall short of needs (Woo et al. 2006). In an attempt 

to shield consumers from anticipated price spikes upon switching to deregulated markets, 

many states imposed rate caps during the transition that hid a nationwide increase in natural 

gas prices; once caps were lifted, electricity prices jumped dramatically (Hickey and Carlson 

2010; Swadley and Yücel 2011). Furthermore, the ability to switch to a third party – and thus to 

escape the old utility rate calculation model – was not open to all customer classes, as several 

third party providers indicated to utility commissioners that they had little intention of taking 

on less profitable low-income households (Oppenheim and MacGregor 2003). 
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Hickey and Carlson (2010) study changes in residential electric rates among states that 

did and did not deregulate in the 1990s and 2000s. They find that among fourteen states (and 

DC) that restructured their electric markets between 1990 and 2008, rates were generally 

higher than those in the remaining states both before and after the restructuring, though the 

pace of increases in several of these restructured states dropped below the pace in the 

remaining states. Swadley and Yücel (2011) also study the change in rates for all residential 

customers in sixteen states from 1990 to 2010, controlling for rate caps, lags in fuel prices, rates 

at which residential customers switched from utility service to third party service, and other 

variables. They find that increases in natural gas and coal prices had statistically significant 

positive effects on electricity rates, that rate caps did lower prices initially, and that 

deregulation did not necessarily decrease rates in the end. Yet they also find that an increase in 

the number of customers switching to third party service has a significant and negative long 

term effect on average rates. The researchers conclude that high rates of switchover to third 

parties may be necessary to lower retail rates in competitive markets. Nevertheless, these 

results speak to the average of rates faced by all consumers but do not identify the specific 

effect on rates for those who remain with utilities. 

Energy Efficiency Resource Standards (EERS) and Decoupling 

 Deregulation is not the only major energy policy to have seen differential adoption 

among states over the past several decades. Although PURPA – and its successors – may have 

been “the single most effective measure in promoting renewable energy” (Union of Concerned 

Scientists 2016, 1), states have also pursued several other measures to that end. Electricity still 

cannot be economically stored on a large scale, which means that it must be used in real time 

as it is produced and that utilities must prepare to meet the highest projected load during their 
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chosen planning horizon, even if that load only applies to a few hours out of the year (Brennan 

and Palmer 2013). Beginning in the 1970s, utilities in the Northwest and later in other regions 

of the country started implementing energy efficiency programs among their customer bases to 

ease high prices and to meet demand forecasts (Nadel and Kushler 2000). Programs are funded 

in several ways, most commonly through a “system benefits charge (SBC),” which is a standard 

number of mills per kilowatt-hour that is levied on all end use consumers statewide and used to 

reimburse utilities for their program costs (Ibid.). Over time, these programs grew from 

narrowly defined direct installation and purchase rebate programs to include comprehensive 

market transformation – that is, promoting greater efficiency among entire product fleets 

(Ibid.). Utilities across the country now run numerous types of efficiency programs geared 

towards electric and natural gas products and processes in all customer classes, ranging from 

standard appliance rebates to upstream marketing to behavior change (for example, see CEE 

2016a). 

Energy efficiency is consistently found to be highly cost effective relative to other energy 

resources (for example, see Arimura et al 2012 and Ettenson and Heavey 2015), although such 

calculations depend heavily on savings assumptions, discount rates, and included costs and 

benefits. Ettenson and Heavey (2015) argue that although California has among the highest 

electric rates in the country, efficiency has caused average bills to be among the lowest 

nationwide. Programs can help reduce peak load and therefore delay or avert expensive 

investment in power plants meant only to meet the highest peak (Brennan and Palmer 2013). 

They can also provide numerous tangential benefits to the most vulnerable communities. 

Ettenson and Heavey (2015) note that the benefits of energy efficiency to low-income 
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communities include higher discretionary income, improved comfort and health, and even 

enhanced job opportunities where programs include local hiring requirements. Utility 

expenditures on energy efficiency programs were roughly $2 billion (in 2007 dollars) in 1993 

(Arimura et al 2012) and grew to nearly $7.5 billion (in 2007 dollars) in 2014. These 

expenditures include roughly $6.1 billion on electric efficiency and roughly $1.5 billion on 

natural gas efficiency (CEE 2016b). This growth occurred despite a 43% drop in expenditures 

between 1993 and 1998 as the onset of deregulation placed pressure on utilities to cut costs 

and to eliminate efficiency programs (Nadel and Kushler 2000).  

Since energy efficiency requires that an electric utility sell less of its product, states have 

implemented a handful of policies to incentivize utilities to pursue efficiency programs. One 

example is energy efficiency resource standards (EERS) that apply statewide and generally 

specify a demand target that must be met within a specific timeframe, the entities that will be 

required to exhibit performance, and the efficiency measures that are acceptable in pursuit of 

the target (Steinberg and Zinaman 2014, 5). Savings are usually defined either as a target 

percentage of a counterfactual baseline or as a percentage reduction beneath that baseline 

(Brennan and Palmer 2013). Thus, they act as an incentive – particularly for utilities – to boost 

their commitment to existing efficiency programs or to create new ones. Brennan and Palmer 

(2013) note that justifications for EERS often extend beyond simply promoting efficiency and 

reducing peak load to goals such as national security, reducing carbon emissions, and job 

creation. In considering whether EERS lead to lower emissions, however, Brennan and Palmer 

(2013) find that they are only optimal emissions reductions policies under very specific market 
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circumstances and that even those EERS aimed at shaving peak demand generally reduce only a 

small fraction of peak use. States with an EERS in place in 2015 are depicted in Figure 2.4 below. 

FIGURE 2.4: States with an Electric EERS in 2015 

 
Map produced by author. Data source: ACEEE (2016a) 

 Another regulatory policy meant to encourage efficiency is revenue decoupling. 

Ratemaking procedures traditionally allow a utility to recover some fixed and variable costs 

through a per-kWh rate that links recovery directly to sales volume (Nissen and Williams 2016). 

“Decoupling” removes a major disincentive for pursuing efficiency programs by allowing the 

utility to recover an approved level of revenue regardless of sales (Ibid.). In fact, Nissen and 

Williams (2016) find that among three states in the Pacific Northwest that implemented 

decoupling after already having EERS in place for several years, expenditures and savings from 

utility efficiency programs increased. They stress that the correlation is not exact, as their data 

set is small and as two of these states had other policies conducive to efficiency programs in 

place at the same time. Nevertheless, they note that the primary electric utility in Idaho (which 
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did not have any other conducive policies in place) experienced fourfold increases in efficiency 

expenditures and savings after decoupling was allowed. In their study of efficiency program 

savings, Arimura et al (2012) also find a positive – though insignificant – correlation between 

savings and the existence of a decoupling policy. 

 Decoupling entails revenue monitoring and regular rate adjustments that set 

remuneration back on track towards the approved amount (Lesh 2009). Adjustments are 

usually calculated for each customer class – which include residential, commercial, industrial, 

and possibly subclasses – and are often annual but may also be semiannual or monthly (Ibid.). 

Differences between projected and actual revenues, which trigger the adjustments, can occur 

because of variability in weather and consumer activity, though some electric utilities do 

account for the effect of weather in calculating the adjustment (Lesh 2009). States with 

decoupling in place in 2015 are depicted in Figure 2.5 below. 

FIGURE 2.5: States with Electric Decoupling in 2015 

 
Map produced by author. Data sources: ACEEE (2016b), IEE (2013), Williams (2016) 
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 Lesh (2009) studies utility filings across the United States to determine how decoupling 

adjustments affect consumer rates overall. She finds that adjustments can be both positive and 

negative – as we would expect from the policy’s definition – and that the majority are under 

one percent in either direction, which in the positive case translated to an extra two dollars on 

a monthly utility bill in 2007 (67). She obtained largely similar results in a follow up study three 

years later (see Morgan 2012). Lesh (2009) does note, however, that the overall effect of an 

adjustment on a customer’s bill is dependent on the previous adjustment – a rebate this year 

will effectively translate into a rate hike if it is smaller than last year’s rebate (69-70). 

Other state policies intended to encourage utility energy efficiency programs include 

lost revenue adjustment mechanisms (LRAM), straight fixed-variable rates, and savings-sharing 

between customers and the IOU or between customers and the IOU’s shareholders (IEE 2013 

reviews certain policies in place by state in 2012). These policies do not generally represent as 

large a shift from traditional utility remuneration schemes as decoupling. Lesh (2009) defines a 

straight fixed-variable rate as one “in which the fixed monthly customer charge recovers all of 

the utility’s fixed costs of service and the variable, energy-related charge only covers the 

variable cost of energy” (66-67). This is simply a reorganization of typical rate structures, in 

which some fixed costs may also be recovered through the volumetric energy charge (see 

Reneses, Rodríguez, and Pérez-Arriaga (2013) for a more thorough discussion). With regard to 

LRAM, Nissen and Williams (2016) note that previous research has considered this scheme 

inferior to decoupling on an equity basis, since LRAM allows positive rate adjustments to 

compensate utilities but does not entail negative rate adjustments to compensate consumers. 
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Renewable Portfolio Standards (RPS) 

 Several states have enacted renewable portfolio standards (RPS) in recent years to 

encourage the development of renewable energy generation. Renewable portfolio standards 

mandate that a certain percentage of electricity produced or consumed in the state must come 

from renewable sources (Fischer 2010), and they usually specify intermediate benchmarks 

leading up to the year in which the final goal must be met (Tra 2016). The definition of 

“renewable” may differ from state to state. Utilities meet the obligations either by operating 

their own renewable power plants (if the state regulatory regime allows them to own 

generation), by purchasing renewably sourced power from elsewhere, or by purchasing 

renewable energy certificates, which is possible in every state with an RPS except Hawaii and 

New York (Ibid.). States with an RPS in place in 2015 are depicted in Figure 2.6. 

FIGURE 2.6: States with an RPS in 2015 

 
Map produced by author. Data source: NCSL (2016) 
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Fischer (2010) shows mathematically that the effects of an RPS on electric retail rates 

will depend on the relative elasticities of the supply curve for renewable resources and the 

combined supply curve for incumbent fossil fuel generation, namely that rates should decrease 

if the combined fossil fuel supply curve is sufficiently steeper. She finds that increases in the 

stringency of the RPS should translate to higher rates ceteris paribus. Fischer (2010) also shows 

that the nature of an RPS as both a tax on fossil fuel generation and a subsidy to renewable 

generation engenders critical points at which the RPS is cheaper to meet by reducing overall 

demand rather than by increasing renewable capacity. Accordingly, she proposes that energy 

efficiency programs may mitigate positive price effects of an RPS by reducing demand – which 

will reduce retail rates and renewable energy certificate prices – or by making electricity 

demand more elastic, which could also mitigate rate increases (112). Finally, Fischer (2010) 

notes that her predictions are generally borne out in simulations. Palmer and Burtraw (2005) 

also find that in simulations on the Haiku energy model developed by Resources for the Future, 

the price effects of a hypothetical national RPS with an end year of 2020 are low up to a 15% 

mandate but increase sharply between 15% and 20%, as wind power replaces generation from 

nuclear and natural gas sources rather than from other fossil fuels. 

Tra (2016) studies the effects of RPS enactment on residential and commercial electric 

rates between 2001 and 2012. He finds that after controlling for state-by-year fixed effects, 

residential rates are roughly three percent higher for utilities affected by an RPS but that 

marginal increases in RPS stringency, meaning smaller changes than those simulated by Palmer 

and Burtraw (2005), do not significantly affect rates. Tra (2016) concludes, therefore, that the 

costs imposed on utilities by an RPS are likely fixed rather than variable. Aside from the costs of 
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RPS compliance, which are passed on to consumers to varying degrees depending on the 

regulatory scheme in place, Linares, Batlle, and Pérez-Arriaga (2013) note that secondary 

effects may occur in wholesale markets as the penetration of renewables increases. These 

could be negligible if the renewable generation does not tend to set marginal prices, or they 

could be significant if the intermittency of renewables necessitates regular cycling of other 

generation technologies, thus increasing their operating costs (Ibid.). 

Energy Burden and Low Income Assistance Initiatives 

 The concept of “energy burden” aims to quantify how much of a household’s income is 

devoted to energy purchases and how changes in the price of residential energy sources affect 

household financial outcomes. Drehobl and Ross (2016) define energy burden as “total annual 

utility spending (electric, gas, and/or other heating fuel) as a percentage of total annual gross 

household income” (8). These researchers use 2011 and 2013 American Household Survey data 

to study the energy burden of households in forty-eight US metropolitan regions. They find that 

although low-income households (defined as those with income less than or equal to 80% of 

the local area median income) tend to spend less money on energy overall because they 

generally live in smaller spaces, the median energy burden of low-income households was three 

times that of households with higher incomes and twice the burden of the median household 

for their entire sample. Drehobl and Ross (2016) also find that the energy burden of low-

income, African American, and renting households were highest in the Southeast and Midwest. 

McIlmoil (2014) studies differential poverty rates and energy burdens in 2012 among 

electric utility service territories (IOUs, municipal utilities, and cooperatives) in the 

Southeastern United States. He notes that average energy expenditures in the South increased 
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from $1,500 in 2001 to $2,000 in 2009, primarily because of increases in electric rates (2). 

McIlmoil (2014) also finds that the average burden of electricity costs in the Southeast in 2012 

was 3% – compared to an average national burden for electricity and natural gas of 2.7% – and 

that the burden was higher for customers of municipal and cooperative utilities than for 

customers of IOUs. A study by the US Department of Health and Human Services (2014) puts 

the median energy burden nationwide in 2011 at 7%, with a median for low-income households 

(defined as those at or below 150% of the Department’s income guidelines) of 13.4%. 

 Drehobl and Ross (2014) note that high energy burden is often the result of factors such 

as heating and appliance inefficiencies, renter status (that is, not owning the systems that use 

energy), lack of information about the availability of assistance, and changes in income or 

household size, among others (11). Accordingly, these researchers find that low-income, 

African-American, and renting households in their dataset often pay more for energy per 

square foot, which suggests less efficient housing (4). In a study of seventy-two low-income 

households (those at or below 150% of the poverty line) in Dorchester, Massachusetts, 

Hernández and Bird (2010) find that utility payments were a financial challenge for the vast 

majority of participants. These authors also argue for greater coordination between housing 

and utility energy efficiency programs, noting that even in cases where low-income households 

receive government assistance with rent that exceeds 30% of their income, energy costs often 

cause bills to far exceed this percentage (10). Drehobl and Ross (2016) echo the assertion of 

Ettenson and Heavey (2015) that low electric rates do not necessarily translate to low bills, 

noting that states with some of the highest average utility bills in 2014 had electric rates that 

were only around the national average (18). 
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 The effects of high energy burden, particularly for low- and moderate-income (LMI) 

households, are stark and severe. Drehobl and Ross (2015) note that these effects include 

inadequate heating and light, unsafe living spaces, and stress, all of which contribute to health 

problems (13); Hernández and Bird (2010) add unstable housing to this list. Hernández and Bird 

(2010) also note that healthcare costs for low-income households stemming from a high energy 

burden are often shifted to state taxpayers at large. Oppenheim and MacGregor (2003) 

similarly point out that utility costs associated with these households, such as shutoff expenses, 

are generally recouped from other ratepayers. High energy burden, even if concentrated 

among LMI households, is thus a public policy issue with ramifications for all segments of 

society. 

The federal government, states, and utilities do offer energy programs for LMI 

households, though they may not be sufficiently far reaching. The US Department of Health and 

Human Services established its Low Income Home Energy Assistance Program (LIHEAP), which 

covers a portion of energy bills, in 1981 (Hernández and Bird 2010). However, the percentage of 

eligible households participating in LIHEAP decreased from 36% in 1981 to just 19% in 2011 (US 

Department of Health and Human Services 2014). The US Department of Energy also runs a 

Weatherization Assistance Program (WAP), which helps low-income households save money 

through upgrades to building shell efficiency and is the largest such program in the country (US 

Department of Energy 2017). 

Many utilities also run efficiency programs specifically for LMI customers, though these 

programs represented only about 7% of electric energy efficiency expenditures by US utilities in 

2015 (CEE 2016a). Drehobl and Ross (2016) calculate that bringing the homes occupied by LMI 
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households up to the efficiency of the median household in their sample would reduce their 

energy burden by 35%, yet they find that cities in their sample with the highest energy burdens 

also tended to have the lowest investment in efficiency programs. In addition, McIlmoil (2014) 

notes that only about one eighth of residents of the Southeastern US have adequate financial 

resources to cover the upfront costs of energy efficiency program participation (20). Even if 

efficiency improvements are available, Hernández and Bird (2010) point out that states often 

need to allow for special lease provisions that prevent evictions or rent hikes when housing 

values increase after the upgrades. Finally, many states offer rate discounts to LMI households 

in the form of fixed bill percentages or dollar amounts, or otherwise percentages that change 

depending on the level of consumption (Oppenheim and MacGregor 2003). Data regarding 

participation in these rate programs do not appear to be widely available, however. 

CHAPTER 3: METHODS 

 The objective of this research effort is to determine whether state level energy policies 

have affected the energy burden of US residential electric customers over time. I focus 

specifically on customers who receive bundled service from an investor-owned utility, 

regardless of whether electric sector deregulation has occurred in the state. To conduct the 

analysis, I first define a new metric for electric energy burden and then use fixed effects 

regression techniques to analyze changes in this metric over time at the level of the electric 

utility. This chapter discusses the new metric, as well as assumptions and data handling 

procedures. The full analysis follows in the subsequent chapter. 
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Median Household Electric Burden (MHEB) 

The dependent variable in this analysis is median household electric burden (MHEB), 

which I define as the average per-household revenue that an investor-owned utility (IOU) 

derives from residential electric sales divided by the median household income within its 

service territory. Put differently, MHEB asks the question, “What would the electric burden of a 

utility’s median income customer (household) be if that customer spent the same amount of 

money annually for electric service as did the average residential customer of that utility?” 

MHEB is a measure of electric energy burden, not of the burden imposed by all household 

energy purchases, and it is therefore different from the fuel-agnostic definition of energy 

burden provided by Drehobl and Ross (2016). All else equal, MHEB should be lower than overall 

energy burden.  

One immediate question that arises from the definition of MHEB is whether high-

income households spend more in dollar terms than those at or below the median income, and 

if so, whether this artificially inflates average revenues and estimates of MHEB overall. As 

discussed previously, Drehobl and Ross (2016) find that the median energy burden of low-

income households among forty-eight metro regions in the United States was over three times 

that of other households and was two times that of the median household for their entire 

sample. Therefore, as defined here, MHEB is more likely to approximate the burden of low and 

moderate-income (LMI) households than if it were defined solely using medians or averages.  

For this reason, I expect it to shed some light on the most economically vulnerable residential 

ratepayers. A more pragmatic reason to define MHEB in this way is that only average (not 

median) household electric purchases by utility are available from the Energy Information 
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Administration, and only estimates of median (not average) household income are available 

from the Census for years before 2005. 

Regression Model and Analytical Approach 

Equation 3.1 below presents the fixed effects regression model for the primary analyses 

in Chapter 4 of this paper: 

 MHEBit = β1Tit + 𝛃𝟐𝐂𝐢𝐭 + 𝛃𝟑𝐈𝐢𝐭 + 𝛖𝐢 + εit               (3.1) 

where MHEB is the median household electric burden in percentage terms for a given utility 

service territory, T is the treatment policy of interest – energy efficiency resource standard 

(EERS), renewable portfolio standard (RPS), or deregulation – C is a vector of control variables 

that includes lags on the policy of interest, I is a vector of interaction terms,  is a vector of 

utility-specific fixed effects, and  is a random error term. The subscripts i and t indicate a given 

IOU and a given year, respectively. This analysis considers the policies in combination before 

assessing each (and its lags) separately. 

“Utilities” are defined here on a company-by-state basis, meaning that companies 

operating in several states are treated as a separate utility in each state. This aligns with the 

intention to test varying policy effects. A “multistate” utility must follow the policies in place in 

each individual state and is also regulated separately in each state, so its local subsidiaries 

should operate somewhat differently when energy policies diverge. I therefore disagree with 

Tra (2016) that including “multistate” utilities will prevent the identification of policy effects, 

and I have included these utilities in my analysis. The fixed effects approach is particularly 

advantageous given the definition of utility that I use here, since it will remove both attributes 
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that remain constant for a company over time, as well as attributes that remain constant for a 

state over time. 

A common approach to addressing the effects of time in fixed effects regression is to 

include dummy variables for each year or to interact year dummies with other independent 

variables. The appearance of dummies for various policies in this analysis, as well as of multiple 

lags on those dummies, raises the potential for significant multicollinearity between the policy 

and year dummies. Thus, it was necessary to find an alternative approach for dealing with the 

time component in this analysis. I instead made use of the tendency for time trends to induce 

autoregressive serial correlation in the errors of time series regressions. For each of the four 

analyses in Chapter 4, I first used the xtregar command (with fixed effects) in Stata to perform 

the regression in Equation 3.1, excluding any lagged variables to prevent multicollinearity. I 

then extracted ρ – the coefficient of AR(1) serial correlation estimated as a byproduct of xtregar 

– and used the transformation proposed by Prais and Winsten (1954) to remove serial 

correlation from all variables, including those that did not appear in the initial regression. I used 

xtregar to estimate ρ rather than using xtreg and simply regressing the residuals on their first 

order lags because xtregar utilizes the prais function to determine a convergent value of ρ 

through iteration (StataCorp 2015a, 2015b). Finally, I performed the main analytical regression 

using the xtreg function with fixed effects and including any appropriate lags. I instructed xtreg 

to calculate standard errors that were clustered by IOU; these clustered errors are known to be 

robust to arbitrary forms of heteroskedasticity and serial correlation (Wooldridge 2003). Thus, 

this process allowed me to remove estimated serial correlation from the data used in each 

analysis and therefore to increase the possibility that coefficient estimates would be unbiased 
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by a time trend. In addition, the standard errors estimated by xtreg were themselves robust to 

any further correlation or heteroskedasticity, which enabled appropriate hypothesis testing. 

 Table 3.1 below lists the variables analyzed in Chapter 4, followed by a general 

discussion. 

TABLE 3.1: Variables Included in Analysis 

Variable Name Description Unit 

mheb Median household electric burden in service territory in year t % 

eers_policy Dummy for EERS in year t (and up to five lags) 0/1 

rps_policy Dummy for RPS in year t (and up to five lags) 0/1 

deregulation Dummy for deregulation in year t (and up to five lags) 0/1 

decoupling_policy Dummy for a revenue decoupling policy in place in year t 0/1 

c&i_revenues 
Utility revenue from commercial and industrial (C&I) customers 
in year t (and up to two lags) 

$Million 

power_expenditures 
Utility power expenditures, from generation and/or purchases, 
in year t (and up to two lags) 

$Million 

t&d_expenditures 
Utility transmission and distribution expenditures in year t (and 
up to two lags) 

$Million 

heating_degree_days Total heating degree days in service territory in year t Degree-days 

cooling_degree_days Total cooling degree days in service territory in year t Degree-days 

median_income* 
Up to four lags of median household income in service territory 
in year t 

$Thousand 

res_revenues* 
Up to four lags of revenue received from residential customers 
in year t 

$Million 

res_customers* Up to four lags of number of residential customers in year t Thousand 

employment_rate 
Employment rate in service territory in year t (and up to four 
lags) 

% 

[var1]X[var2]…X[varN] Interaction term between variables (dummy or otherwise) Various 

dsm_percust_annual_[bound]** 
Dummies for categories of per-customer demand side 
management (DSM) expenditures e in year t 

0/1 

dsm_percust_4yrs_[bound]*** 
Dummies for categories of per-customer DSM expenditures e 
over the previous four years, using the current year residential 
customer base as the denominator 

0/1 

*See Appendix A and the section below on addressing endogeneity 

**Bounds indicate the maximum expenditure per person (e) represented by the dummy variable. 25: 0<e25, 50: 

25<e50, 75: 50<e75, 100: 75<e100, and max: e>100. 

*** Same definition as above. 50: 0<e50; 100: 50<e100; 150: 100<e150, 200: 150<e200, and max: e>200. 
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The potential effect of an EERS and of related demand side management (DSM) 

spending on MHEB is somewhat ambiguous. Utility DSM expenditures translate into costs that 

must be recouped from customers, yet spending also induces participating customers to 

purchase less electricity in any given time period, all else equal. I hypothesize that the effects of 

EERS and DSM spending on MHEB will be negative overall, meaning that decreased use will 

lower average bills more than increased rates raise them, although this result is highly 

dependent upon the uptake of DSM programs. Total DSM spending (energy efficiency and 

demand response together) appears in this analysis instead of only energy efficiency spending 

because energy efficiency and demand response were reported together in Energy Information 

Administration (EIA) data for much of the relevant time period. Similarly, DSM expenditures per 

customer are calculated using residential bundled service customers as the denominator – 

despite the fact that DSM funding is generally also available to commercial and industrial 

customers – because the EIA data are not broken down into customer class for several years. Of 

course, energy efficiency and demand response programs are quite different, and an additional 

dollar will have different marginal effects depending on the program, the customer class, and 

the general energy-savviness of individual consumers. DSM expenditures per residential 

customer are therefore divided into dummy groups to provide wider bounds that characterize 

the impact of spending overall without attempting to identify marginal effects. DSM 

expenditures for prior years appear alongside annual expenditures in recognition of the finding 

by Arimura et al. (2012) that energy efficiency expenditures have significant effects on energy 

use up to fifteen years in the future. Rather than estimate expenditures in the 1980s as these 

authors do, I instead use a proxy of four years’ worth of expenditures to capture some of the 
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cumulative effects of expenditures. Four years is the chosen timeframe because 1990 is the 

earliest year for which relevant EIA data are available, and 1994 is the initial year in my analysis. 

As noted previously, the effects of decoupling are also ambiguous, and I will not make a 

prediction here about their general direction. There appears to be somewhat more consensus 

about the effects of renewable portfolio standards (RPS) and deregulation policies, however. I 

expect that both will have an overall positive effect on MHEB through rates. 

Policy variable dummies are coded as 1 for any year in which they were actually in place 

and 0 otherwise. Thus, if a policy was enacted by the state legislature in 1995 but did not come 

into force until 1997, then 1997 would be the first year marked as “1.” Similarly, in cases where 

a policy was rescinded, the final year in which it was in place for any amount of time is marked 

as “1.” Following Lesh (2009), revenue decoupling mechanisms do not include straight fixed-

variable rates, nor do they include lost revenue adjustment mechanisms (LRAM). Thus, the 

included schemes entail both positive and negative adjustments – regardless of cadence – and 

do not assess a fixed fee for partial cost recovery. As discussed in Chapter 2, “deregulation” has 

generally involved two related components: utility divestment of generation assets and 

implementation of retail choice for customers. Retail choice governs the dummy variables in 

this analysis, though every deregulated state included here has also required or encouraged 

divestment at some point (often at the same time as retail choice). Thus, both effects are 

relevant. 

 I expect commercial and industrial (C&I) revenues to have a negative effect on MHEB 

when decoupling is in place because higher revenues from these customer classes reduce the 

need to raise rates on residential customers. This would be the case specifically when 
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decoupling rate adjustments include all ratepayers, as they do in Massachusetts (Massachusetts 

DPU 2008), but it would not be the result where adjustments are made in for each ratepayer 

class individually. The present analysis does not distinguish between these approaches but 

instead takes a more holistic view. On the other hand, because they are costs that must be 

recouped from ratepayers, expenditures on power and on transmission and distribution (T&D) 

should have positive effects on MHEB. The former includes changes in the prices of generation 

fuels (coal, natural gas, oil, and uranium) by definition without seeking to determine the effects 

of individual fuel prices. Increases in cooling degree days and heating degree days should 

increase residential consumers’ expenditures – and therefore MHEB – when they are associated 

with electric air conditioning and electric heating, respectively. Employment rates are included 

as a proxy for local economic activity; if unemployed workers are hired and incomes generally 

rise when the economy grows, then employment rates should correlate negatively with MHEB. 

Lags on median income itself, as well as on residential revenues, number of residential 

customers, and employment are discussed below in the section on addressing endogeneity. 

Addressing Endogeneity 

 Two sources of potential endogeneity are apparent in the model in Equation 3.1. The 

first is that a utility might decide to increase rates for C&I customers – and thus to shift revenue 

recovery towards C&I – specifically because it detects a high energy burden for its residential 

consumers. In this case, MHEB would affect C&I revenues via an omitted variable that is related 

to policy formulation. This is unlikely in practice because of the nuances of regulatory 

processes. As a gross simplification, rates are generally determined for each ratepayer class 

based on its own contribution to overall costs. Yet the relative importance of C&I customers to 
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a utility’s bottom line may lead IOUs to purposefully recover some C&I-induced costs from the 

more numerous residential consumers, who may not notice this cross-subsidy (Reneses, 

Rodríguez, and Pérez-Arriaga 2013). Therefore, increases in C&I rates on behalf of residential 

consumers are neither consistent with standard ratemaking procedures nor are, in many cases, 

even possible from a customer relations perspective. This clarification does not contradict the 

previous discussion of decoupling. In a state like Massachusetts, where decoupling adjustments 

are calculated on a company wide basis, all customer classes are affected when revenues move 

above or below projections. This does not represent a transfer of wealth from one specific rate 

class to another, however, as would be the case if C&I rates were raised to benefit residential 

consumers. 

 The second potential source of endogeneity is that state policymakers may have chosen 

to implement certain policies in response to changes in MHEB, particularly if the policies were 

expected to reduce residential energy burden. Appendix A addresses this possibility in more 

detail. The overall conclusion is that policymakers are more likely to respond to the 

components of MHEB – residential bills and, on a more granular level, the number of residential 

consumers and the revenues derived from them – than to relatively new concepts such as 

MHEB or energy burden in general. Following the discussion in Appendix A, lags on median 

household income, residential revenues, number of residential customers, and local 

employment rates (see Table 3.1) appear as controls in the main analysis to correct for 

potential sources of endogeneity. 
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Data Sources and Data Handling Procedures 

 Annual IOU revenues by customer class, megawatt-hour (MWh) sales by customer class, 

and DSM expenditures were derived from the Energy Information Administration Form EIA-861 

data (EIA 2016). Information on utility costs and expenditures was taken from the Federal 

Energy Regulatory Commission’s annual Form 1 filings database (FERC 2017). Annual 

projections of median household income for each county in the continental United States were 

taken from the United States Census’ Small Area Income and Poverty Estimates (US Census 

Bureau 2016), and annual estimates of county population were taken from the Census’ 

Population and Housing Unit Estimates Tables (US Census Bureau 2017). Yearly projections of 

the number of households in each county were not available from the Census. Thus, median 

household income for each IOU in each year was estimated as follows: (1) multiplying the 

population of each county by the percentage of the county’s land area covered by a given IOU 

service territory (in order to estimate the “served population”), followed by (2) averaging the 

median household income for all counties in which the service territory is located, using 

“covered population” as a weight. In all cases, monetary values were converted to 2015 dollars 

using the Bureau of Labor Statistics CPI Calculator (BLS 2017a). 

 The procedure for estimating median household income implicitly assumes that a 

county’s residential population is distributed evenly. This is a gross but necessary simplification, 

and it will tend to “draw” urban incomes into the estimates for IOUs whose service territories 

cover, for example, only the rural areas of a county. If urban incomes are generally higher than 

rural incomes in a given state, this method will bias income estimates upward. Luckily, many 

service area boundaries throughout the country follow county lines or are otherwise vast 
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enough that the bias may be miniscule. Furthermore, weighting ensures that counties with 

small populations – even if divided among several utilities – only marginally affect the income 

estimates. This analysis originally intended to compare estimates of median household income 

taken separately from the county and Census tract levels, the second of which would 

theoretically be more accurate because Census tracts are smaller in area. Unfortunately, this 

comparison was not possible because estimates of median household income by Census tract 

are not available for the majority of years in the study. 

Following Arimura et al. (2012), IOUs with total annual sales of under 150,000 MWh 

were excluded from the analysis, as these utilities have not been required to report energy 

efficiency expenditures in Form EIA-861 since 1998 (see Arimura et al. 2012, footnote 14). Even 

so, DSM expenditures were not available for several IOUs in a handful of years. Where data 

were available for years on either side of the gap, missing entries were interpolated by 

averaging the difference over the missing years, assuming a constant rate of increase or 

decrease in each year. Utility DSM budgets and expenditures often ramp up and down 

depending upon the length of the regulatory cycle (CEE 2016a) – for example, expenditures will 

decrease as a five-year budget is expended and shoot up again once a new budget is approved 

by the regulator – but they very rarely drop to zero. Thus, this interpolation procedure is 

insufficient to catch minor swings in DSM spending but is necessary to handle erroneous data 

omissions. The need to project in this way is another reason why DSM expenditures per 

customer appear as discrete variables in the regression model. In the few cases where DSM 

data were not available on both ends of the gap, these entries were left alone. Aside from DSM 
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expenditures, revenue or cost data were missing for a small number of other records and were 

estimated in the same way. 

In several states, government entities or contracted organizations administer statewide 

DSM programs that supplement or replace those provided directly by utilities. The Form EIA-

861 instructions request that utilities report DSM expenditures and savings for programs that 

they directly run or otherwise fund but, since 2011, they ask that respondents exclude DSM 

data for a short list of third parties that EIA surveys directly (EIA 2016). The seven third party 

organizations relevant to this analysis are Cape Light Compact (in Massachusetts), District of 

Columbia Sustainable Energy Utility, Efficiency Maine, Efficiency Vermont, Energy Trust of 

Oregon, New York State Energy Research and Development Authority (NYSERDA), and 

Wisconsin Focus on Energy. Funding administered by these organizations is generally available 

to all residents of a state, and I assigned their expenditures from 2011 to 2015 (except for 

Efficiency Vermont, as explained below) to IOUs within the associated states according to the 

number of residential customers receiving bundled service from each utility in the given year. 

This process incorporated all municipal utilities, cooperatives, and IOUs in the respective states 

– even those that were excluded from the analysis – so as not to grossly overestimate the 

funding available to the various IOUs. For years prior to 2011, I assumed that data from these 

third parties were included in utility-reported data per EIA’s instructions; most of the 

organizations were not even founded until the middle years of the dataset. Although EIA does 

not collect separate data for Efficiency Vermont, responses by Vermont utilities between 2000 

and 2010 do not appear to include Efficiency Vermont funding. Thus, I extracted data for 

Efficiency Vermont directly from the organization’s annual reports for these years (Efficiency 
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Vermont 2016) and handled in the same way as other third parties. Finally, I added third party 

funding only after performing the missing data interpolations discussed above. 

 Data for heating degree days and cooling degree days by state climate division and by 

year were taken from the National Oceanic and Atmospheric Administration (NOAA 2017b). 

Heating and cooling degree days for each IOU in each year were calculated using averages for 

the climate divisions in which a given IOU’s service territory is located, weighted by the 

percentage of the service territory that lies within each climate division. Employment data for 

each county in each year were taken from the Bureau of Labor Statistics (2017b). Employment 

rates were calculated for each IOU in each year by weighting the total number of employed 

laborers and the total labor force in each county by the percentage of that county’s area 

covered by a given utility – again assuming equal population distribution – and calculating a 

new employment rate from these adjusted data. 

 Information regarding whether an IOU had various policies in place during a given year 

came from numerous sources. Where I used multiple sources for a particular policy, I compared 

information across the sources to verify that dates were accurate. EERS data were taken from 

the American Council for an Energy-Efficient Economy (2016a). Decoupling data were taken 

from the Edison Foundation Institute for Electric Efficiency (IEE 2013), the American Council for 

an Energy-Efficient Economy (2016b), and Williams (2016). Information on RPS policies was 

available from the National Conference of State Legislatures (2016). Finally, deregulation 

information was derived from Electric Choice (2016), Stanford University (2003), and Swadley 

and Yücel (2011). In the vast majority of cases, a given policy was instituted or revoked for all 

IOUs in a state at one time. Yet in several instances, deregulation and decoupling were 
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instituted in different years for various IOUs as a result of legislative or regulatory actions. Start 

or end years for decoupling and deregulation in the dataset vary accordingly by IOU in the 

relevant states. See Appendix B for a table outlining the years in which certain policies were in 

place for states included in the analysis. 

 ArcGIS shapefiles for IOU service territories in fourteen states were publicly available 

from state utility commissions, and an additional three states were covered by a single file from 

ArcGIS Open Data (2016). For the remainder of included states, I created shapefiles for IOU 

service territories manually using PDF, JPEG, or service territory map files that were available 

from public utility commissions or from individual IOUs. Form EIA-861 requires that IOUs list the 

counties in which their service territories are located, and changes in the counties served are 

documented for several IOUs between 1994 and 2015. A cross-check of these changes with the 

most recent available service territory maps and with certain older maps indicated that in every 

case, the supposed changes were either (likely) incorrect or involved such small areas or 

counties with such small populations that the median household income, heating and cooling 

degree day, and employment calculations outlined above are unlikely to be significantly 

affected. County and state shapefiles were available from ArcGIS Online (2013), and shapefiles 

for state climate divisions were available from NOAA (2017a).  

 Several utility mergers occurred during the timeframe under consideration. In such 

cases, I treated the merged entity as one utility across all years, aggregating data for the 

component companies in years prior to their merger (while being careful not to double-count 

data after the merger). Yet in cases where formerly independent IOUs have merged but 

continue to market themselves as distinct entities (e.g. Nevada Power and Sierra Pacific Power), 
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and where EIA has continued to collect separate data for each, I treated these entities as 

separate utilities. Again, I do not expect that financial dependence between such entities would 

significantly impact the variables I analyze here. A couple of utilities also disbanded into smaller 

entities during the years of the dataset. I performed the opposite calculation for these utilities, 

estimating individual shares of EIA or FERC data using residential customer counts. In this way, 

the number of IOUs remains constant over time, and calculations (for example, median income) 

for individual utilities are consistent. 

 The final dataset incorporates 105 IOUs across all or parts of 34 states and the District of 

Columbia, and the data span twenty-two years from 1994 to 2015. In addition to the IOUs 

removed from the dataset because their sales were under 150,000 MWh, several other 

individual IOUs were removed because of irreconcilable issues with their EIA or FERC data or 

because sufficiently detailed service territory maps were unavailable. Thus, not every IOU in 

every otherwise “included” state appears in this analysis. Two states – Nebraska and Tennessee 

– were excluded because they do not contain IOUs; an additional four (Louisiana, Michigan, 

North Carolina, and South Carolina) were excluded because their IOUs and rural electric 

cooperatives exhibit significant territory overlap, and it was therefore impossible to use them 

for calculating median household income and other metrics. Sufficiently detailed service 

territory maps were not available for the remainder of excluded states. 

 Figure 3.1 indicates the states for which at least one IOU was included in the analysis. 

According to data from Form EIA-861, the 105 utilities represented in this study served 45% of 

all US residential electric customers in 2015, including 67% of all residential customers who 

received bundled service from an IOU. Appendix B contains a table listing all IOUs included in 
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this analysis, as well as a map of the associated service territories that also indicates major 

metropolitan areas that are fully or partially served by included IOUs. 

 FIGURE 3.1: States With At Least One IOU Included in Analysis 

 
Map produced by author 
 

CHAPTER 4: RESULTS 

 This chapter describes the results of the main analysis. The first section provides 

summary statistics for select variables, and the second and third sections describe the results of 

a combined policy analysis and individual policy analyses, respectively. As described in Chapter 

3, the anticipated correlations between key variables and median household electric burden 

(MHEB) were as follows: negative for energy efficiency resource standards (EERS) and demand 

side management (DSM) expenditures per customer, positive for renewable portfolio standards 

(RPS), and positive for deregulation. 
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Summary Statistics 

 Median household income was $56,344 on average across all IOUs and all years, with 

minimum and maximum values of $33,232 and $92,553, respectively. The weighted average 

value of median household income grew from $59,353 in 1994 to $61,523 in 2015. Average 

annual household electric expenditures ranged from $389 to $2,366, with a mean value of 

$1,202. Table 4.1 below presents summary statistics for other select variables. Tables 4.2 to 4.4 

separately provide statistics for these variables based on whether each of the three policies of 

interest was in place in a given year, including the results of Wilcoxon Rank-Sum Tests to 

examine median differences across variables when the policy is (or is not) in place. In all four 

tables, “dsm_expend_currentyr” refers to demand side management (DSM) spending per 

residential customer in the current year, and “dsm_expend_last4yrs” refers to total DSM 

spending per residential customer over the previous four years (the number of customers in the 

denominator is the number in the current year). Although different levels of DSM expenditures 

are represented as categorical dummy variables in the main analysis at the end of this chapter, 

Tables 4.1 through 4.4 present summary statistics on DSM expenditures as a continuous 

variable. Again, all monetary values are in real 2015 dollars. 
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TABLE 4.1: Summary Statistics 

Variable Units Mean Median Std. Dev. Min. Max. 

mheb % 2.20 2.12 0.57 0.69 5.14 

c&i_revenues $Million 780.77 449.85 1,143.43 0.02 8,827.16 

power_expenditures $Million 868.85 507.82 1,104.22 - 11,803.59 

t&d_expenditures $Million 91.11 41.29 136.31 0.15 1,116.41 

heating_degree_days Degree-days 5,592.51 5,554.74 1,743.03 1,220.60 10,501.68 

cooling_degree_days Degree-days 922.01 734.04 644.99 44.85 3,552.26 

employment_rate % 94.22 94.67 2.08 84.11 98.30 

dsm_expend_currentyr $/person 33.40 17.26 41.71 - 367.04 

dsm_expend_last4yrs $/person 118.20 63.30 136.43 - 1,393.45 

n = 2,310 
  

 
   

MHEB was roughly 2.2% on average across the twenty-two years in the sample, with a 

median of 2.12% and a maximum value of 5.14%. The weighted average value of MHEB 

decreased from 2.17% in 1994 to 2.11% in 2015 (not shown in Table 4.1). These numbers are 

comparable to the 2012 electric-only energy burden of 3% that McIlmoil (2014) calculated for 

the Southeastern US, as well as to the overall national energy burden of 3.5% calculated by 

Drehobl and Ross (2016). Nevertheless, they are below the energy burdens for low- and 

moderate-income (LMI) consumers calculated in the latter study and by the US Department of 

Health and Human Services (2014). Therefore, although I expected MHEB to approximate LMI 

electric energy burden to a certain degree (as discussed in Chapter 3), the estimates in my 

analysis likely underestimate the burdens faced by LMI households and should be treated as a 

lower bound for this group. 

Commercial and industrial (C&I) revenues and expenditures on power and on 

transmission and distribution (T&D) vary greatly but are clearly skewed to the right. The 

maximum annual power expenditure of nearly $12 billion is particularly surprising, but it is 

nevertheless accurate and is the result of a large swing in a particular investor-owned utility’s 
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(IOU) nuclear fuel costs (American Electric Power 2001). Given this range, it is important to 

remember that the IOUs considered here vary greatly in size: across all 105 IOUs and 22 years, 

the number of residential consumers with either bundled or network-only service varied from 

2,673 to 4,749,486, with an average of 550,885. Demand side management (DSM) expenditures 

per customer averaged $33 in any given year, with a maximum of $367, and DSM expenditures 

per customer in the previous four years varied by similar magnitudes. 

TABLE 4.2: Summary Statistics by Existence of an EERS 

  EERS_POLICY = 0 (n = 1,754) EERS_POLICY = 1 (n = 556) 

Variable Units Mean Median Std. Dev. Mean Median Std. Dev. 

mheb %  2.17  2.09***(-)  0.58   2.26  2.21  0.51  

c&i_revenues $Million  753.87  450.99(-)  1,046.29   865.64  440.91  1,404.35  

power_expenditures $Million  837.19  483.70***(-)  1,091.51   968.74  599.10  1,138.64  

t&d_expenditures $Million  60.74  26.76***(-)  89.30   186.92  112.39  200.00  

heating_degree_days Degree-days  5,671.18  5,534.82**  1,687.90   5,344.31  5,656.56  1,886.74  

cooling_degree_days Degree-days  886.98  742.22(-)  584.05   1,032.53  700.11  798.26  

employment_rate %  94.65  95.05***  1.85   92.87  93.07  2.19  

dsm_expend_currentyr $/person  24.79  11.36***(-)  33.48   60.55  48.67  52.22  

dsm_expend_last4yrs $/person  102.05  47.95***(-)  128.11   169.16  127.36  148.92  
Results of Wilcoxon Rank-Sum Tests: * p  0.1; ** p  0.05;*** p  0.01; (-) indicates negative p-value (median lower when policy 
not in place) 

 
TABLE 4.3: Summary Statistics by Existence of an RPS 

  RPS_POLICY = 0 (n = 1,460) RPS_POLICY = 1 (n = 850) 

Variable Units Mean Median Std. Dev. Mean Median Std. Dev. 

mheb %  2.22  2.12*  0.60   2.15  2.11  0.51  

c&i_revenues $Million  734.86  439.20**(-)  1,030.14   859.64  467.65  1,312.36  

power_expenditures $Million  794.67  451.02***(-)  1,110.38   996.28  656.41  1,082.40  

t&d_expenditures $Million  53.11  24.95***(-)  76.84   156.38  82.04  183.40  

heating_degree_days Degree-days  5,617.31  5,459.75(-)  1,757.07   5,549.90  5,723.85  1,718.83  

cooling_degree_days Degree-days  924.72  765.95***  599.82   917.36  650.79  716.32  

employment_rate %  94.64  95.02***  1.87   93.50  93.97  2.23  

dsm_expend_currentyr $/person  24.39  10.90***(-)  33.65   48.86  37.49  49.07  

dsm_expend_last4yrs $/person  98.89  45.59***(-)  126.78   151.38  113.58  145.80  
Results of Wilcoxon Rank-Sum Tests: * p  0.1; ** p  0.05;*** p  0.01; (-) indicates negative p-value (median lower when 
policy not in place) 
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TABLE 4.4: Summary Statistics by Existence of Deregulation 

  DEREGULATION = 0 (n = 1,614) DEREGULATION = 1 (n = 696) 

Variable Units Mean Median Std. Dev. Mean Median Std. Dev. 

mheb %  2.26  2.16***  0.61   2.06  2.03  0.43  

c&i_revenues $Million  770.46  454.81(-)  1,180.86   804.68  432.27  1,051.97  

power_expenditures $Million  756.14  434.36***(-)  970.75   1,130.24  710.80  1,328.88  

t&d_expenditures $Million  76.06  30.88***(-)  124.69   126.00  70.16  154.59  

heating_degree_days Degree-days  5,483.47  5,381.35***(-)  1,963.06   5,845.36  5,813.59  1,028.74  

cooling_degree_days Degree-days  1,014.78  785.49***  716.69   706.88  642.49  351.71  

employment_rate %  94.25  94.75**  2.17   94.15  94.55  1.87  

dsm_expend_currentyr $/person  30.05  15.15***(-)  37.45   41.15  29.21  49.39  

dsm_expend_last4yrs $/person  111.13  57.32***(-)  131.69   134.59  87.63  145.63  
Results of Wilcoxon Rank-Sum Tests: * p  0.1; ** p  0.05;*** p  0.01; (-) indicates negative p-value (median lower when policy 
not in place) 

 
Notwithstanding the interactive effects between the various policies, median MHEB 

appears significantly higher when an EERS is in place than when it is not, but median MHEB is 

marginally lower when an RPS is in place and is significantly lower when deregulation is in 

place. This is the exact opposite of my predictions above with respect to directional effects. 

Median expenditures are significantly higher when any of the policies are in place; for power 

expenditures in particular, this may reflect the exogenous increase in gas prices during the late 

1990s and early 2000s that was described in Chapter 3. Median C&I revenues are also higher 

under the three policies, though this difference is only significant for an RPS. An increase in C&I 

revenues could be due in part to increased expenditures: if regulators allow IOUs to pass higher 

fuel costs to consumers more easily in deregulated states than in regulated states, and if 

demand for electricity amongst C&I customers is sufficiently inelastic in the short term, then 

C&I revenues will increase as rates increase. Median DSM expenditures per customer are 

significantly higher under EERS policies, which is expected, although they are also significantly 
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higher under either of the other two policies. These initial results raise interesting questions 

that I address in the following sections. 

Combined Policy Effects 

The first analysis combines all three primary policies together in order to study 

interactions between them. Unlike the analyses of individual policies that follow in the next 

section, this section focuses on contemporaneous interactions between the policies 

themselves, though it does include lags on control variables related to utility expenditures. 

Unlike data from the Energy Information Administration (EIA), which are available back to 1990, 

cost data from the Federal Energy Regulatory Commission (FERC) are only available starting in 

1994. I must therefore drop one year of data for each lag on expenditures, which are more 

likely to affect rates in the current year than are contemporary expenditures, since rate 

changes generally occur on a yearly or longer basis (except in the case of intra-annual 

decoupling adjustments).  

Table 4.5 below presents four models: model (1) is the analysis without lags on 

expenditures, model (3) is the same analysis including two lags on the expenditure variables 

and on C&I revenues, and models (2) and (4) are sensitivity analyses of models (1) and (3), 

respectively, that exclude any records for which I interpolated data (see Chapter 3 for a 

discussion). Each model is fitted and therefore includes only as many lags as are statistically 

significant on the margin. In order to save space, I have also excluded certain insignificant or 

marginally significant control variables from the tables. Unlike the marginal lags removed via 

the fitting procedure, these control variables are components of models (1) through (4). 

Appendix C presents regression outputs that contain the full list of variables, regardless of 
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significance, as well as baseline models that also include the complete vector of lags before 

fitting. Tests for joint significance also appear in Appendix C. The values in parentheses in each 

table are clustered standard errors, which are robust to arbitrary forms of heteroskedasticity 

and serial correlation (Wooldridge 2003). Finally, the notes at the bottom of the table present 

the value of ρ used in the initial Prais-Winsten data transformation, along with other 

information.  

Multicollinearity is generally a greater threat in the combined analysis because there is a 

high level of temporal overlap between some policies. For example, an RPS was in place for 89% 

of the utility-years in which an EERS was in place (this overlap is 59% the other way around), 

and an RPS was in place for 72% of utility-years in which deregulation was in place (again 59% 

the other way around). Serial correlation is also a greater threat in the combined analysis – or 

at least in the baseline models presented in Tables C.1 and C.3 in Appendix C – because I 

include lags on all three components of MHEB to correct for potential endogeneity. (Appendix A 

explains this threat in more detail.) After conducting the first Prais-Winsten transformation as 

outlined in Chapter 3, I used the xtregar command in Stata (with fixed effects) to regress mheb 

on the same independent variables plus four lags on median income, residential revenues, and 

residential customers and collected the residuals. I then regressed these residuals on their first-

order lags to test whether the MHEB components would induce additional AR(1) serial 

correlation. The resulting point estimate of ρ was -0.0097, with a p-value of 0.411. Thus, I 

concluded that these lags were not inducing significant additional correlation and that it was 

not necessary to perform a second Prais-Winsten transformation before the full analysis.  
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TABLE 4.5: Combined Policy Regression Outputs 

Variables (1) (2) (3) (4) 

eers_policy 1.02e-01 7.53e-02 -1.82e-03 -1.87e-02 
 (3.64e-02)*** (5.04e-02) (3.57e-02) (4.77e-02) 
rps_policy 4.26e-02 5.13e-02 4.59e-02 5.97e-02 
 (1.84e-02)** (2.23e-02)** (1.65e-02)*** (2.00e-02)*** 
deregulation -7.74e-02 -8.66e-02 -5.20e-02 -5.80e-02 
 (2.24e-02)*** (2.91e-02)*** (2.07e-02)** (2.52e-02)** 
eers_policyXdecoupling_policy -1.26e-01 -1.27e-01 -5.82e-02 -6.27e-02 
 (3.91e-02)*** (5.26e-02)** (4.18e-02) (5.23e-02) 
eers_policyXrps_policyXderegulationXdecoupling_policy 1.82e-01 2.10e-01 1.44e-01 1.91e-01 
 (6.16e-02)*** (7.00e-02)*** (6.18e-02)** (7.05e-02)*** 
c&i_revenues 8.70e-05 8.95e-05 1.20e-04 1.20e-04 
 (3.83e-05)** (4.06e-05)** (4.36e-05)*** (4.53e-05)*** 
c&i_revenuesXdecoupling_policy -1.78e-05 -1.68e-05 -2.78e-06 4.46e-07 
 (7.69e-06)** (9.54e-06)* (6.69e-06) (8.27e-06) 
t&d_expenditures 3.46e-04 2.93e-04 2.50e-04 2.03e-04 
 (9.31e-05)*** (8.37e-05)*** (8.64e-05)*** (8.20e-05)** 
t&d_expenditures_lag1   1.80e-04 2.17e-04 
   (8.47e-05)** (9.26e-05)** 
heating_degree_days 9.88e-05 1.00e-04 8.95e-05 9.08e-05 
 (9.42e-06)*** (1.07e-05)*** (7.80e-06)*** (9.21e-06)*** 
cooling_degree_days 3.47e-04 3.34e-04 3.20e-04 3.04e-04 
 (2.46e-05)*** (2.81e-05)*** (2.49e-05)*** (3.08e-05)*** 
median_income_lag1 2.95e-03 2.67e-03 1.17e-02 1.31e-02 
 (3.24e-03) (3.63e-03) (3.22e-03)*** (3.76e-03)*** 
median_income_lag2 -1.13e-02 -1.42e-02 -5.22e-03 -7.19e-03 
 (3.16e-03)*** (3.58e-03)*** (3.03e-03)* (3.51e-03)** 
median_income_lag3 -9.48e-03 -1.05e-02 -1.17e-02 -1.15e-02 
 (3.31e-03)*** (3.88e-03)*** (3.04e-03)*** (3.52e-03)*** 
median_income_lag4 -4.33e-03  -1.21e-02 -1.01e-02 
 (2.35e-03)*  (2.53e-03)*** (2.94e-03)*** 
residential_revenue_lag2 1.35e-04 1.43e-04   
 (5.85e-05)** (6.49e-05)**   
residential_revenue_lag3 2.38e-04 2.22e-04   
 (5.97e-05)*** (6.17e-05)***   
residential_revenue_lag4 1.21e-04 1.08e-04   
 (4.31e-05)*** (4.27e-05)**   
residential_customers_lag2 -3.19e-04 -3.67e-04   
 (1.14e-04)*** (1.58e-04)**   
residential_customers_lag3 -2.52e-04 -2.64e-04   
 (1.11e-04)** (1.68e-04)   
residential_customers_lag4 -3.92e-04 -3.50e-04   
 (7.90e-05)*** (9.08e-05)***   
employment_rate -3.59e-03 -2.99e-03 -2.76e-02 -2.56e-02 
 (3.93e-03) (4.06e-03) (4.31e-03)*** (4.56e-03)*** 
employment_rate_lag1 -1.76e-02 -1.88e-02 -3.89e-02 -4.23e-02 
 (5.50e-03)*** (6.18e-03)*** (5.26e-03)*** (5.92e-03)*** 
employment_rate_lag2 1.55e-02 1.34e-02   
 (4.34e-03)*** (4.31e-03)***   
employment_rate_lag3 1.40e-02 1.74e-02   
 (5.54e-03)** (5.94e-03)***   
employment_rate_lag4 1.86e-02 1.80e-02   
 (5.05e-03)*** (5.41e-03)***   
_constant -2.75e-03 -1.25e-03 1.80e+00 1.80e+00 
 (1.24e-02) (1.27e-02) (1.23e-01)*** (1.28e-01)*** 

R2 Within 0.6257 0.6570 0.2352 0.2320 
R2 Between 0.3304 0.3885 0.1340 0.1242 
R2 Overall 0.5765 0.6050 0.1966 0.1806 
Observations 2,310 1,852 2,100 1,646 
Groups 105 105 105 105 

* p<0.1; ** p<0.05; *** p<0.01; Parentheses contain clustered std. errors; Model 1: Fitted (NCL); Model 2: No Projected Data (NCL); Some 
insignificant or marginally significant control variables have been removed from the table (see Appendix C for the full results); ρ=0.790 
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As shown in Table 4.5, the contemporaneous effects of all three main policies are 

significant in model (1), and this significance holds across models for rps_policy and 

deregulation. The estimated coefficients on eers_policy (in the first model) and on rps_policy 

are positive, which suggests that these policies have increased electric rates for IOU customers 

to a greater extent than any increase in incomes over time. Although the result for eers_policy 

is unexpected, the estimate for rps_policy corroborates the findings of Tra (2016) that RPS 

policies have increased residential electric rates. Nevertheless, the effect on mheb here is much 

smaller than the 3% increase in residential electric rates calculated by Tra (2016). Using the 

average median household income of $56,344 from the sample, the coefficients on eers_policy 

and rps_policy in model (1) correspond to respective average increases in annual household 

electric expenditures of $56 (0.1 mheb percentage points) and $23 (0.043 mheb percentage 

points), all else equal. Alternatively, the negative coefficient estimate on deregulation suggests 

that deregulation has had the opposite effect and corresponds to an average, ceteris paribus 

decrease in annual household electric expenditures of $45 (0.077 mheb percentage points). The 

magnitude of this effect is similar to but smaller than the contemporaneous, state-specific 

effects of deregulation on retail rates calculated by Swadley and Yücel (2011). Most of the 

interaction terms are insignificant, and they are excluded from Table 4.5, though the negative 

coefficient on eers_policyXdecoupling_policy suggests that decoupling restrains the rate 

increases associated with an EERS. The opposite appears true when all three policies and 

decoupling are in place: the coefficient on the interaction of all four policies is significant and 

positive, which suggests that decoupling may not help keep rates down in this instance.  
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The estimated coefficients on c&i_revenues are positive and significant, which is the 

opposite of my prediction in Chapter 3, though it may indicate that rates tend to increase for all 

customer classes at the same time (so C&I rates and C&I revenues will increase as mheb 

increases). Notably, the positive coefficient on the interaction between c&i_revenues and 

decoupling_policy provides further evidence that decoupling limits rate increases that might 

otherwise occur. The coefficients on t&d_expenditures, heating_degree_days, and 

cooling_degree_days are generally positive and significant, as expected. The estimated 

coefficients on the components of mheb (median_income, residential_revenues, and 

residential_customers) follow their mathematical relationship with mheb: those in the mheb 

numerator have positive coefficients, and those in the denominator have negative coefficients. 

The lags on employment_rate of two or more years have positive estimated coefficients, which 

is also consistent with the expectation that incomes rise with employment. The negative 

coefficients on the contemporaneous employment_rate and on its one-year lag – as well as the 

positive coefficient on median_income_lag1 – are unexpected, though they may signify an 

initial income effect that promotes additional electricity use (e.g. purchase of new appliances) 

when incomes rise.  

Unfortunately, none of the estimated coefficients on DSM expenditures per customer 

are significant, and these variables are excluded from the table. Table C.1 shows that the 

estimated coefficients for most of these variables, at least in models (1) and (2), are positive. 

We could partially infer this from the coefficient on eers_policy itself, since we would expect an 

EERS to lead to greater DSM expenditures over time. Finally, coefficients tend to have similar 

signs and magnitudes for given variables between models (1) and (2) and between models (3) 
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and (4) when they are significant, which suggests that data interpolation methods were not a 

major source of error. Even where the differences are more substantial, they are mere tenths 

or hundredths of an MHEB point and are therefore small in a practical sense. 

Individual Policy Effects 

The following three analyses focus on each policy individually, and in particular on the 

effects of lags of the policies and of various control variables. The control variables include 

contemporaneous interactions with the other two major policies (as well as with 

decoupling_policy) to address some of the temporal overlap between policies in a given state. 

Tables 4.6 to 4.8 below provide the regression outputs for the fixed effects model in Equation 

3.1, with eers_policy, rps_policy, and deregulation respectively serving as the policy variable of 

interest. For each, models (1) through (4) are defined the same way as in the combined analysis 

above. Again, the values in parentheses in each table are clustered standard errors, which are 

robust to arbitrary forms of heteroskedasticity and serial correlation (Wooldridge 2003). The 

value of ρ used in the initial Prais-Winsten data transformation for each of the analyses appears 

beneath the associated table, along with other information.  
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TABLE 4.6: EERS Regression Outputs  

Variables (1) (2) (3) (4) 

eers_policy 6.48e-02 5.13e-02 -2.94e-02 -3.98e-02 
 (3.70e-02)* (5.54e-02) (3.56e-02) (5.06e-02) 
eers_policy_lag1 7.40e-02 7.82e-02 3.87e-02 4.49e-02 
 (2.24e-02)*** (2.31e-02)*** (2.13e-02)* (2.22e-02)** 

eers_policy_lag2 5.73e-02 5.89e-02   
 (1.99e-02)*** (2.30e-02)**   
eers_policy_lag3 5.42e-02 5.51e-02   
 (2.47e-02)** (2.79e-02)*   

eers_policyXrps_policy -6.61e-03 9.73e-05 4.21e-02 5.03e-02 
 (4.55e-02) (6.73e-02) (4.57e-02) (6.38e-02) 
eers_policyXderegulation -3.39e-02 -1.08e-02 -1.78e-02 7.07e-03 
 (4.21e-02) (5.04e-02) (4.11e-02) (4.86e-02) 
decoupling_policy 5.48e-02 5.60e-02 2.24e-02 1.05e-02 
 (3.76e-02) (5.66e-02) (3.50e-02) (4.96e-02) 
eers_policyXdecoupling_policy -1.05e-02 -8.03e-04 2.53e-02 3.91e-02 
 (3.45e-02) (4.80e-02) (3.27e-02) (4.22e-02) 
c&i_revenues 8.06e-05 7.58e-05 1.19e-04 1.15e-04 
 (3.30e-05)** (3.18e-05)** (4.32e-05)*** (4.63e-05)** 
c&i_revenues_lag1   3.14e-05 4.21e-05 
   (2.13e-05) (1.99e-05)** 
c&i_revenues_lag2   2.67e-05  
   (1.54e-05)*  
c&i_revenuesXdecoupling_policy -2.16e-05 -2.20e-05 -1.05e-05 -1.12e-05 
 (7.81e-06)*** (9.33e-06)** (7.52e-06) (8.55e-06) 
t&d_expenditures 3.13e-04 2.56e-04 2.61e-04 2.08e-04 
 (9.66e-05)*** (8.78e-05)*** (8.70e-05)*** (7.99e-05)** 
t&d_expenditures_lag1   1.89e-04 2.24e-04 
   (8.87e-05)** (9.74e-05)** 
heating_degree_days 9.19e-05 9.22e-05 8.88e-05 9.07e-05 
 (9.34e-06)*** (1.04e-05)*** (7.83e-06)*** (9.42e-06)*** 
cooling_degree_days 3.40e-04 3.24e-04 3.19e-04 3.07e-04 
 (2.44e-05)*** (2.70e-05)*** (2.49e-05)*** (3.12e-05)*** 
median_income_lag1 2.91e-03 2.85e-03 1.18e-02 1.32e-02 
 (3.33e-03) (3.72e-03) (3.25e-03)*** (3.79e-03)*** 
median_income_lag2 -1.12e-02 -1.27e-02 -5.40e-03 -7.52e-03 
 (3.12e-03)*** (3.65e-03)*** (3.07e-03)* (3.57e-03)** 
median_income_lag3 -8.67e-03 -8.31e-03 -1.20e-02 -1.11e-02 
 (3.23e-03)*** (3.86e-03)** (3.01e-03)*** (3.50e-03)*** 
median_income_lag4   -1.19e-02 -9.63e-03 
   (2.49e-03)*** (2.90e-03)*** 
employment_rate -5.66e-03 -4.54e-03 -2.68e-02 -2.47e-02 
 (3.67e-03) (3.87e-03) (4.28e-03)*** (4.45e-03)*** 
employment_rate_lag1 -1.60e-02 -1.77e-02 -3.91e-02 -4.21e-02 
 (5.42e-03)*** (6.22e-03)*** (5.23e-03)*** (5.89e-03)*** 
employment_rate_lag2 1.62e-02 1.38e-02   
 (4.54e-03)*** (4.55e-03)***   
employment_rate_lag3 1.60e-02 1.86e-02   
 (5.68e-03)*** (6.16e-03)***   
employment_rate_lag4 1.44e-02 1.57e-02   
 (5.14e-03)*** (5.67e-03)***   
_constant -4.05e-02 -3.92e-02 1.75e+00 1.74e+00 
 (1.30e-02)*** (1.35e-02)*** (1.20e-01)*** (1.23e-01)*** 

R2 Within 0.6176 0.6495 0.2318 0.2270 
R2 Between 0.1012 0.1753 0.0857 0.0822 
R2 Overall 0.5290 0.5580 0.1681 0.1540 
Observations 2,310 1,852 2,100 1,646 
Groups 105 105 105 105 

* p<0.1; ** p<0.05; *** p<0.01; Parentheses contain clustered std. errors; Model 1: Fitted (NCL); Model 2: No Projected Data (NCL); Model 3: 
Fitted (CL); Model 4: No Projected Data (CL); Some insignificant or marginally significant control variables have been removed from the table 
(see Appendix C for the full results); ρ=0.793 
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 As in the combined analysis, the contemporaneous effect of eers_policy on mheb 

appears to be positive and significant (at least in model (1)). The effects of lags on eers_policy 

are also positive and significant up to three years out, with coefficients becoming gradually 

smaller over time. The estimated effect of eers_policy in model (1) corresponds to an average 

and ceteris paribus increase in annual electric expenditures of about $37 (0.065 mheb 

percentage points); this increases to $42 (0.074 mheb percentage points) after one year and 

then begins to decline again. The interactions with eers_policy are insignificant across all four 

models, though the negative and significant coefficient estimates on 

c&i_revenuesXdecoupling_policy again suggest that decoupling policies decrease the magnitude 

of rate hikes that would occur for other reasons. Coefficients on the categorical dummies for 

DSM expenditures per household are again insignificant across models, and they are excluded 

from Table 4.6. As shown in Table C.5, these insignificant coefficients are generally positive as 

the dollar amounts increase, which loosely supports the finding of positive and significant 

effects of an EERS policy on mheb. Nevertheless, these coefficients switch sign in Table C.7 

(models (3) and (4)), which suggests that correlation between DSM expenditures and other 

(lagged) expenditures is confounding the analysis of DSM spending. 

 Where significant, the coefficients on control variables are similar to those in the 

combined analysis. Coefficients on median_income_lag1, employment_rate, and 

employment_rate_lag1 again have the opposite sign from the one expected, which may signal 

initial income effects that promote increased electricity use. Once more, significant coefficients 

tend to have similar signs and magnitudes across models, and the primary (though small) 
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differences that do exist appear to result from inclusion of the expenditure lags in models (3) 

and (4) rather than from exclusion of projected data.  
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TABLE 4.6: RPS Regression Outputs 

Variables (1) (2) 

rps_policy 5.82e-02 4.94e-02 
 (2.45e-02)** (2.71e-02)* 
rps_policy_lag1 4.25e-02 3.79e-02 
 (1.93e-02)** (1.88e-02)** 
rps_policy_lag2 5.77e-02 4.34e-02 
 (3.10e-02)* (3.89e-02) 
rps_policy_lag3 5.21e-02 3.15e-02 
 (2.54e-02)** (2.77e-02) 
rps_policy_lag4 6.57e-02 7.15e-02 
 (2.20e-02)*** (2.47e-02)*** 
rps_policy_lag5 3.99e-02 4.37e-02 
 (2.08e-02)* (2.23e-02)* 
eers_policyXrps_policy -4.52e-03 1.71e-02 
 (2.53e-02) (2.97e-02) 
rps_policyXderegulation -4.98e-02 -2.83e-02 
 (3.08e-02) (3.66e-02) 
c&i_revenues 1.14e-04 1.09e-04 
 (3.92e-05)*** (4.20e-05)** 
c&i_revenuesXdecoupling_policy -2.19e-05 -2.47e-05 
 (8.51e-06)** (1.02e-05)** 
power_expenditures 1.59e-05 2.51e-05 
 (9.38e-06)* (1.79e-05) 
t&d_expenditures 2.44e-04 2.02e-04 
 (1.00e-04)** (9.14e-05)** 
heating_degree_days 9.73e-05 9.86e-05 
 (9.33e-06)*** (1.07e-05)*** 
cooling_degree_days 3.46e-04 3.31e-04 
 (2.38e-05)*** (2.75e-05)*** 
median_income_lag2 -1.16e-02 -1.30e-02 
 (3.01e-03)*** (3.48e-03)*** 
median_income_lag3 -9.34e-03 -9.23e-03 
 (3.28e-03)*** (3.88e-03)** 
residential_revenues_lag2 1.27e-04 1.38e-04 
 (5.62e-05)** (6.31e-05)** 
residential_revenues_lag3 2.28e-04 2.22e-04 
 (5.94e-05)*** (6.31e-05)*** 
residential_revenues_lag4 1.05e-04 9.81e-05 
 (4.38e-05)** (4.57e-05)** 
residential_customers_lag2 -3.07e-04 -3.56e-04 
 (1.13e-04)*** (1.49e-04)** 
residential_customers_lag3 -2.61e-04 -2.67e-04 
 (1.16e-04)** (1.77e-04) 
residential_customers_lag4 -4.11e-04 -3.71e-04 
 (9.09e-05)*** (1.01e-04)*** 
employment_rate_lag1 -1.80e-02 -1.91e-02 
 (5.32e-03)*** (6.17e-03)*** 
employment_rate_lag2 1.67e-02 1.35e-02 
 (4.28e-03)*** (4.20e-03)*** 
employment_rate_lag3 1.50e-02 1.81e-02 
 (5.49e-03)*** (5.98e-03)*** 
employment_rate_lag4 1.32e-02 1.42e-02 
 (4.96e-03)*** (5.44e-03)** 
_constant -3.71e-02 -3.30e-02 
 (1.36e-02)*** (1.43e-02)** 

R2 Within 0.6279 0.6574 
R2 Between 0.2691 0.3484 
R2 Overall 0.5692 0.5981 
Observations 2,310 1,852 
Groups 105 105 

* p<0.1; ** p<0.05; *** p<0.01; Parentheses contain clustered std. errors; Model 1: Fitted 
(NCL); Model 2: No Projected Data (NCL); Some insignificant or marginally significant control 
variables have been removed from the table (see Appendix C for the full results); ρ=0.794 
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Following the discussion in Appendix A, all three components of mheb (median_income, 

residential_revenues, and residential_customers) appear in the RPS analysis. Thus, it was again 

necessary to test for any additional AR(1) serial correlation that might arise due to the 

interaction of these variables with mheb. After performing the first Prais-Winsten 

transformation according to the procedure in Chapter 3, I ran another regression using the 

xtregar command in Stata and collected the residuals. I then regressed the residuals on their 

first-order lags; the resulting estimate of ρ was -0.0163, with a p-value of 0.136. This is 

insufficient evidence for AR(1) serial correlation, and a second Prais-Winsten transformation 

was not necessary. Another peculiarity of the RPS analysis was that the expenditure lags in 

models (3) and (4) were not significant and were removed during the lag fitting procedure. 

Therefore, I only include models (1) and (2) in Table 4.7 and in Appendix C. 

 The contemporaneous and lagged effects of rps_policy on mheb are generally positive 

and significant, though there is no clear trend in the magnitude of coefficients over time. The 

coefficient on rps_policy in model (1) corresponds to an average and ceteris paribus increase in 

annual household electric expenditures of $33 (0.058 mheb percentage points) when an RPS is 

in place. This again supports the findings of Tra (2016) that RPS policies have led to residential 

rate increases over time, though as in the combined policy analysis above, the estimated effect 

is smaller here. Interactions are once more insignificant except for 

c&i_revenuesXdecoupling_policy, whose estimated coefficient is negative and significant, as in 

the EERS and combined analyses above. Other control variables follow the same patterns as in 

the EERS and combined analyses, including the negative coefficient on the first-degree lag of 

employment_rate, and all categorical dummies for DSM spending per household are 
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insignificant. Once again, significant coefficients have similar magnitudes between models (1) 

and (2), which suggests that the data interpolation method did not significantly affect results. 

TABLE 4.7: Deregulation Regression Outputs 

Variables (1) (2) 

deregulation -1.23e-01 -1.00e-01 
 (2.80e-02)*** (2.11e-02)*** 
deregulation_lag1 -8.20e-02 -6.49e-02 
 (5.41e-02) (3.39e-02)* 
deregulation_lag2 -2.32e-02 -3.39e-02 
 (3.11e-02) (2.46e-02) 
deregulation_lag3 8.76e-02 8.07e-02 
 (4.29e-02)** (3.10e-02)** 
eers_policyXderegulation 3.23e-02 5.78e-03 
 (3.87e-02) (2.85e-02) 
rps_policyXderegulation 4.98e-02 3.22e-02 
 (2.69e-02)* (2.12e-02) 
decoupling_policy 5.56e-03 1.16e-03 
 (5.55e-02) (4.10e-02) 
deregulationXdecoupling_policy 7.75e-02 6.71e-02 
 (2.76e-02)*** (2.69e-02)** 
c&i_revenues 5.94e-05 6.34e-05 
 (3.15e-05)* (3.26e-05)* 
c&i_revenuesXdecoupling_policy -1.25e-05 -9.95e-06 
 (9.62e-06) (7.84e-06) 
power_expenditures 2.39e-05 1.39e-05 
 (1.72e-05) (8.86e-06) 
t&d_expenditures 3.18e-04 3.75e-04 
 (8.59e-05)*** (9.53e-05)*** 
heating_degree_days 9.49e-05 9.48e-05 
 (1.04e-05)*** (9.39e-06)*** 
cooling_degree_days 3.19e-04 3.34e-04 
 (2.73e-05)*** (2.45e-05)*** 
median_income_lag1 2.21e-03 2.76e-03 
 (3.59e-03) (3.30e-03) 
median_income_lag2 -1.36e-02 -1.03e-02 
 (3.57e-03)*** (3.17e-03)*** 
median_income_lag3 -9.29e-03 -8.24e-03 
 (3.86e-03)** (3.28e-03)** 
median_income_lag4  -4.97e-03 
  (2.41e-03)** 
employment_rate -3.58e-03 -3.57e-03 
 (3.89e-03) (3.79e-03) 
employment_rate_lag1 -1.95e-02 -1.89e-02 
 (6.12e-03)*** (5.38e-03)*** 
employment_rate_lag2 1.31e-02 1.50e-02 
 (4.29e-03)*** (4.17e-03)*** 
employment_rate_lag3 1.91e-02 1.55e-02 
 (5.82e-03)*** (5.43e-03)*** 
employment_rate_lag4 1.73e-02 1.82e-02 
 (5.31e-03)*** (5.06e-03)*** 
_constant -8.92e-03 -8.86e-03 
 (1.43e-02) (1.40e-02) 

R2 Within 0.6502 0.6189 
R2 Between 0.2148 0.1565 
R2 Overall 0.5673 0.5406 
Observations 1,852 2,310 
Groups 105 105 

* p<0.1; ** p<0.05; *** p<0.01; Parentheses contain clustered std. errors; Model 1: Fitted (NCL); Model 2: No 
Projected Data (NCL); Model 3: Fitted (CL); Model 4: No Projected Data (CL); Some insignificant or marginally 
significant control variables have been removed from the table (see Appendix C for the full results); ρ=0.793 
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 The lag fitting procedure again removed all lags on expenditures and on c&i_revenues in 

models (3) and (4), which are therefore excluded here and in Appendix C. The estimated 

coefficient on deregulation in Table 4.7 is negative and significant, which is consistent with the 

combined analysis in the previous section. The coefficient corresponds with an average and 

ceteris paribus drop in mheb of 0.12 percentage points when deregulation is in place in the 

current year – as compared to years in which deregulation is not in place – which translates to 

roughly $68 fewer dollars spent on electricity in a given year. This coefficient is similar in 

magnitude to some of the contemporaneous, state-specific effects of deregulation on 

residential electric rates determined by Swadley and Yücel (2011). It is also a notable estimate, 

given that the analysis focuses specifically on those residential customers who stuck with IOUs 

under deregulation. Yet this coefficient may also reflect the effect of rate caps implemented by 

many states in the first years of deregulation, which Hickey and Carlson (2010) and Swadley and 

Yücel (2011) both find depressed electric rates and bills initially. Although most lags on 

deregulation are statistically insignificant, Tables 4.7 and C.11 indicate an apparent trend 

towards positive values over time. The coefficient on deregulation_lag3 in particular is both 

positive and significant, which suggests that deregulation has actually increased the electric 

energy burden of IOU customers over time, whether due to the removal of price caps (Hickey 

and Carlson 2010) or to the need for IOUs to recoup capacity investment costs from a dwindling 

customer base. This effect is masked in the finding by Swadley and Yücel (2011) that residential 

prices overall (including for customers who switched to third party providers) decreased as 

competitive retail markets matured under deregulation. Future research should clarify this 

finding by examining additional lags. 
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Aside from this, the estimated coefficients for the remaining control variables are 

similar in sign and magnitude to those in the EERS and RPS models. Here again, 

decoupling_policy has insignificant effects on its own, as well as an insignificant (though 

negative, as expected) effect in its interaction with c&i_revenues. Interestingly, 

decoupling_policy has a significant and positive effect in its interaction with deregulation. There 

are two plausible explanations for this effect. One is that deregulated IOUs have under-

recovered the revenue levels agreed with regulators under decoupling policies, which has led to 

consistently positive rate adjustments. Table 1 in Swadley and Yücel (2011) reports that rate 

caps lasted from two to over ten years and were removed in various states between 2001 and 

2011. Table B.2 in Appendix B of this paper shows that decoupling often began around ten 

years after deregulation in states with both policies. Thus, another explanation for the positive 

coefficient on deregulationXdecoupling_policy is that the beginning of revenue decoupling in 

many states coincided with the removal of price caps, and the interaction is actually picking up 

the effect of cap removals. Future research may attempt to discern which explanation holds 

more sway. Finally, coefficient estimates on other control variables follow the patterns 

identified in the individual and combined policy analyses above, and statistically significant 

coefficients again have similar signs and magnitudes across the two models. 

 
CHAPTER 5: DISCUSSION AND OPPORTUNITIES FOR FUTURE RESEARCH 

On the whole, this analysis (at least loosely) corroborates the findings of prior research. 

After controlling for factors related to utility finances, weather, and economic activity, it 

appears that median household electric burden (MHEB) has increased over time among the 

investor-owned utilities (IOUs) studied and that at least part of this increase can be attributed 



  56 

to various state level energy policies enacted since the early 1990s. Put differently, as time has 

progressed and as states have implemented policies to shape the electric sector with various 

motives, the amount of money an average household spends on electricity has grown faster 

than median income among those who rely on local IOUs for all aspects of their electric service. 

These findings are particularly apparent with regard to electric sector deregulation. 

MHEB mirrors the response of electric rates to price caps that were enacted by states and later 

eased, as described by both Hickey and Carlson (2010) and Swadley and Yücel (2011), and the 

long term effect appears to be an increase in IOU customers’ electric burden. The results for 

renewable portfolio standards (RPS) provide support to the findings of Tra (2016), namely that 

rates have also risen for these customers over time as a result of RPS implementation. The 

results for energy efficiency resource standards (EERS) are statistically significant and positive 

and suggest that EERS policies are also associated with increases in MHEB, even though it was 

not possible to identify significant effects of different DSM spending levels through this analysis. 

Decoupling of utility revenues from sales appears to have a somewhat small (though 

statistically insignificant) effect on MHEB across all analyses – in line with the small magnitude 

of decoupling adjustments identified by Lesh (2009) – but it generally appears to constrain 

exogenous rate hikes. Control variables such as heating degree days and lags on median income 

have some of the most consistent effects across all four analyses, which at least lends credence 

to their inclusion. 

 In reviewing these results, it is critical to remember that MHEB and electric rates are not 

equivalent, even if they appear to move in sync. MHEB is a more “fundamental” metric than 

electric rates in that it accounts for income as well as expenditures. If electric rates increase at a 
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pace equal to or less than that of income, then rate increases are not an immediate problem. If 

rates increase more quickly than incomes, however, then MHEB will increase as long as 

consumers cannot change their electric consumption behaviors sufficiently in the short term. 

This has real distributional effects in society, despite the seemingly small coefficients estimated 

in Chapter 4. An increase in annual electricity expenditures of any amount or income 

percentage will mean much more to low- and moderate income (LMI) households than to 

wealthy households. Furthermore, although MHEB is an imperfect proxy for LMI electric energy 

burden and does not reflect the wide spectrum of energy burden values identified in studies 

such as Drehobl and Ross (2016) and McIlmoil (2014). 

Regional disparities noted by these same authors reappear in the current analysis: the 

states with the highest MHEB values in 2015 – weighted by number of bundled service 

customers for each IOU – were Alabama (3.77%), Mississippi (3.57%), West Virginia (3.14%), 

and Arkansas (3.05%), whereas jurisdictions with the lowest values were in Illinois (1.59%), the 

District of Columbia (1.48%), Minnesota (1.42%), and Colorado (1.34%). The first three states 

are notably ones that did not implement any of the three primary policies discussed here, 

whereas the latter five all implemented various combinations of these policies. According to 

data from the US Census Bureau (2016), the states with the highest MHEB values in 2015 were 

also amongst the most impoverished, with Mississippi having the highest percentage of its 

population living in poverty (22.1%) and West Virginia having the seventh highest (18%). 

Poverty estimates were more mixed for the states with low MHEB values in 2015: DC had the 

eighth highest poverty level (17.7%), whereas Minnesota had the third lowest (10.2%). Thus, it 

is not enough to say that certain state level energy policies are associated with increases in 
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electric burden over time, since fundamental differences still exist between states that did and 

did not implement these policies. These differences complicate the analysis of whether energy 

policies have been “good” or “bad” for consumers overall (particularly since not all benefits and 

costs are included here), and they are likely rooted in overarching historical, political, and 

economic factors that have interacted with electric sector development but that have much 

broader social ramifications. 

In short, the results of this analysis are nuanced. Perhaps the most significant takeaway 

is that distributional impacts are still very important in electric policy, and policymakers must 

remain vigilant in ensuring that they do not create new problems as they attempt to solve 

existing ones. Well-intentioned policy can lead to unintended consequences, such as increased 

energy burden for electric consumers who stick with their local utilities, and both potential 

consequences and the methods for addressing them must appear in the cost-benefit calculus. 

Adequate solutions are not always apparent. For example, can and should deregulated states 

force electric consumers to choose a service provider rather than sticking with the local IOU by 

default, given the findings of Swadley and Yücel (2011) that average rates decrease as large 

numbers of consumers switch to third parties? Should energy efficiency programs target high-

income consumers who use a lot of electricity, even if all consumers pay the costs of these 

programs? These are the types of questions that will define our future energy system. 

This study has attempted to provide a “big picture” to frame the discussion of how 

EERS, RPS, and deregulation have affected residential consumer electric energy burden. Yet 

there are numerous issues that I have either not addressed or have only partially addressed 

here, and these represent avenues of future research that would more fully develop the 
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present analysis. One such possibility is to attempt more granular calculations of MHEB using, 

for example, median incomes on the Census tract or municipality level. This would enable 

better approximations of MHEB for utilities in the absence of adequate household level data. If 

household data were available, an even better option would be to perform the analysis 

specifically for LMI households while controlling for the effects of discounted electric rates and 

energy assistance programs that they may take advantage of. Candidates for other control 

variables include the existence of regional electric wholesale markets, customer participation in 

distributed energy resource programs such as solar net metering, and the local prevalence of 

electric (versus natural gas) heating. It would also be useful to differentiate demand side 

management expenditures into separate energy efficiency and demand response categories 

(and to further differentiate each by customer class), as well as to include other outside sources 

of energy efficiency funding, such as the Regional Greenhouse Gas Initiative in the Northeast or 

any regional efficiency organizations that IOUs do not incorporate into their annual data 

submissions to the Energy Information Administration. Researchers might address the 

confounding influence of temporal overlap between policies by performing quantitative and 

qualitative analyses of state-specific program nuances, such as the timing of rate cap 

implementation and removal and the specific technologies included in an RPS. Finally, future 

research should attempt expanded regional comparisons and, in particular, should ensure 

adequate representation from the US Southeast. 

CHAPTER 6: CONCLUSION 

 This study has attempted to join the energy policy impacts and energy burden 

literatures to assess whether and how state level energy policies have affected residential 
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consumers’ energy burden in the United States over the past two decades. Specifically, I have 

addressed the impacts of energy efficiency resource standards (EERS), renewable portfolio 

standards (RPS), and electric sector deregulation – as well as decoupling of utility revenues 

from sales of electricity. I have found that median household electric burden (MHEB), which I 

defined specifically for this analysis, has largely followed the movements of electric rates that 

numerous previous studies have identified. The effects of deregulation are the most significant 

and suggest that despite short-term rate decreases in response to rate cap implementation, the 

electric burden of residential customers that stick with their local investor-owned utility (IOU) 

has increased over time. The results for RPS are less obvious but provide weak evidence of an 

increase in MHEB. The results for EERS are similarly weak, but IOU expenditures on demand 

side management (DSM) – a primary result of EERS policies – do appear to increase MHEB over 

time. Decoupling has very small impacts overall, but it appears to mitigate the effects of rate 

increases on MHEB. 

 The results of this analysis provide a wide berth for additional research, particularly 

studies that would delve deeper into the differences among similar policies enacted from state 

to state. Regardless, the primary takeaway is that otherwise well-intentioned energy policies 

may be engendering unintended negative consequences; this finding is, of course, nothing new 

to the energy burden literature. As the US electric system becomes more integrated and data-

driven, and as state and local governments continue to push towards emissions reductions and 

other responses to climate change, it is critical that we account for the impact of these 

regulatory adjustments on vulnerable low-income electricity consumers. 
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APPENDIX A: ADJUSTMENTS FOR ENDOGENEITY 

 A major source of potential endogeneity in Equation 3.1 stems from the interaction 

between the median household electric burden (MHEB) and the policy variables of interest: 

energy efficiency resource standards (EERS), renewable portfolio standards (RPS), and 

deregulation. If state regulators first implement these policies in response to perceived changes 

in MHEB, then I cannot treat the policies as independent variables with respect to MHEB, and it 

is necessary either to find suitable instrumental variables for the policies or to address 

endogeneity some other way. Unfortunately, it is challenging to identify instruments for binary 

variables, particularly when they overlap to a significant degree. Even the most promising 

candidate for an instrument – a political variable such as total votes for Democrats or 

Republicans in a utility service territory over the past several election cycles – will not do 

because the policies considered in this analysis were implemented in states with different 

political leanings and because voting is possibly correlated with electric rates or incomes, which 

are components of MHEB. I have therefore chosen to address endogeneity in a different way. 

 Whether defined as MHEB or otherwise, energy burden itself is a somewhat new and 

abstract concept, and for that reason, it is not likely to affect policy decisions directly. I have 

defined MHEB as the average per-household revenue that an investor-owned utility (IOU) 

derives from residential electric sales divided by the median household income within its 

service territory. Put differently, MHEB is the average annual electric bill for a household (AB) 

divided by median household income (MI):  

MHEB = AB / MI             (A.1) 
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Average bills, in turn, are calculated by dividing an IOU’s annual residential revenues 

(RR) by the number of households – or residential consumers (RC) – in a given IOU service 

territory in a given year. Thus, the equation for MHEB breaks down further as follows: 

 

MHEB = (RR / RC) / MI = RR / (RC * MI)          (A.2) 
  

I suggest that these three components of MHEB – residential revenues, number of residential 

customers, and median household income – are more digestible and relevant than MHEB itself 

and that they are the variables which might truly predict policy implementation. 

 I used random effects probit regression analyses to test whether these variables can 

predict implementation of the three policies of interest, or of revenue decoupling. Although the 

main analysis in Chapter 4 uses fixed effects, a sufficient method for analyzing probit models 

with fixed effects does not exist (StataCorp 2015b). Fixed effects and random effects models 

make different assumptions regarding the degree of correlation between the “effect” and the 

explanatory variables; these assumptions are mutually exclusive and cannot both hold in a 

single analysis. Nevertheless, I use the random effects probit model here because I am only 

interested in showing the possibility of endogeneity and in identifying a method to reduce the 

potential for error, rather than in determining exact correlations. I continue to assume fixed 

effects in the main analysis. 

The data for these probit analyses consisted of records for each IOU up to and including 

the year the policy was first implemented, as well as all years for any IOU for which the policy 

was never implemented. This unbalanced panel enabled me to test whether the dependent 

variables were moving in any common direction before a policy was implemented for a given 

IOU (usually for an entire state), relative to IOUs where the policy never appeared. As in the 
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main analyses in Chapter 4, I first used the xtregar command in Stata to perform a random 

effects regression for each policy according to Equation A.3 below: 

 

policy_start_yearit =  
1

median_incomeit−1 + 
2

residential_revenuesit−1 +

  
3

residential_customersit−1 + 
4
employment_rateit−1 + i  +  it                 (A.3) 

 

where policy_start_year is a dummy variable indicating whether the given policy was initiated 

in the given year for the given IOU, median_income is a one-year lag on median income in the 

service territory, residential_revenues is a one-year lag on residential revenues to the utility, 

residential_customers is a one-year lag on residential customers in the service territory, 

employment_rate is a one-year lag on the employment rate in the service territory,  is the 

random effects operator, and  is a random error term. The subscripts i and t indicate a given 

IOU and a given year, respectively. I used random effects here, rather than fixed effects, for the 

reasons noted above.  

To remove the effects of correlation over time, I then used the estimated ρ – the 

coefficient of AR(1) serial correlation calculated as a byproduct of xtregar – to transform the 

data using the Prais-Winsten procedure (Prais and Winsten 1954). One concern is that the lags 

in this particular model may pick up some of the time effect and therefore distort the estimate 

of ρ. Again, I set aside this concern because I am interested in outlining a plausible method to 

deal with endogeneity and am not interested in estimating exact values. The estimated value of 

ρ will remove some time effects and will therefore improve the accuracy of the estimates 

below. 
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Next, I used the xtprobit command in Stata to perform a random effects probit 

regression of the demeaned data, again according to Equation A.3. Finally, I selected significant 

variables from this initial analysis and performed a second probit regression that included them 

along with a one-year lag on mheb, following Equation A.4 below: 

 

policy_start_yearit =  
1

mhebit−1 + 
𝟐

𝐕𝐢𝐭−𝟏 + i + it             (A.4) 

 

where policy_start_year is a dummy variable indicating whether the given policy was initiated 

in the given year for the given IOU, mheb is a one-year lag on median household electric burden 

in the service territory, V is a vector of one-year lags on the significant variables identified 

through the initial regression,  is the random effects operator, and  is a random error term. 

Again, the subscripts i and t respectively indicate a given IOU and a given year. 

The “significant” variables always included at least one MHEB component. I did not 

include all three MHEB components when all were significant, however, since doing so would 

be statistically similar to duplicating the lag on mheb that appears in Equation A.4. I discuss why 

this would be a problem at the end of this appendix. 

The results of the probit analyses are presented in Tables A.1 to A.9 below, along with a 

discussion of their application to the full analysis in Chapter 4. Notes at the bottom of Tables 

A.1, A.3, A.5, and A.8 contain the ρ values used in the Prais-Winsten transformations for the 

given policies. 

  



  69 

TABLE A.1: Random Effects Probit Analysis of EERS Start Year, Model 1 

Dep. Var. / Metrics Indep. Var. Model 1 

eers_start_year median_income_lag1 2.53e-02 
  (1.33e-02)* 
 residential_revenues_lag1 -1.19e-04 
  (5.73e-04) 
 residential_customers_lag1 3.46e-04 
  (6.22e-04) 
 employment_rate_lag1 -2.67e-01 
  (8.45e-02)*** 
 _constant 1.10e+01 
  (3.95e+00)*** 

lnsig2u _constant -1.55e+01 
  (7.75e+05) 
Observations  1,810 

* p<0.1; ** p<0.05; *** p<0.01; Parentheses contain robust std. errors; ρ=0.458 
 

TABLE A.2: Random Effects Probit Analysis of EERS Start Year, Model 2 

Dep. Var. / Metrics Indep. Var. Model 2 

eers_start_year mheb_lag1 -8.73e-02 
  (1.30e-01) 
 median_income_lag1 2.52e-02 
  (1.49e-02)* 
 employment_rate_lag1 -2.77e-01 
  (7.05e-02)*** 
 _constant 1.18e+01 
  (3.27e+00)*** 

lnsig2u _constant -1.49e+01 
  (3.51e+05) 
Observations  1,810 

* p<0.1; ** p<0.05; *** p<0.01; Parentheses contain robust std. errors 

 The most significant dependent variables in model 1 are employment_rate_lag1 and 

median_income_lag1, which are subsequently included in model 2. As the results indicate, 

mheb_lag1 does not significantly predict eers_start_year when these controls are included. The 

same will hold true for further lags on MHEB if equivalent lags on the MHEB components are 

also included. 
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TABLE A.3: Random Effects Probit Analysis of Decoupling Start Year, Model 1 

Dep. Var. / Metrics Indep. Var. Model 1 

decoupling_start_year median_income_lag1 3.09e-02 
  (1.22e-02)** 
 residential_revenues_lag1 2.56e-04 
  (6.24e-04) 
 residential_customers_lag1 -4.81e-05 
  (6.96e-04) 
 employment_rate_lag1 -6.74e-02 
  (3.01e-02)** 
 _constant 2.62e-01 
  (1.29e+00) 

lnsig2u _constant -1.56e+01 
  (1.03e+06) 
Observations  2,089 

* p<0.1; ** p<0.05; *** p<0.01; Parentheses contain robust std. errors; ρ=0.458 

 
TABLE A.4: Random Effects Probit Analysis of Decoupling Start Year, Model 2 

Dep. Var. / Metrics Indep. Var. Model 2 

decoupling_start_year mheb_lag1 6.39e-02 
  (2.08e-01) 
 median_income_lag1 3.85e-02 
  (2.32e-02)* 
 employment_rate_lag1 -7.31e-02 
  (4.55e-02) 
 _constant 2.61e-01 
  (1.59e+00) 

lnsig2u _constant -1.57e+01 
  (2.06e+06) 
Observations  2,089 

* p<0.1; ** p<0.05; *** p<0.01; Parentheses contain robust std. errors 

The most significant dependent variables in model 1 for decoupling (Table A.3) are again 

employment_rate_lag1 and median_income _lag1, which are subsequently included in model 

2. Once more, mheb_lag1 does not significantly predict decoupling_start_year when these 

controls are included, and an analogous argument will hold for further lags on MHEB. 
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TABLE A.5: Random Effects Probit Analysis of RPS Start Year, Model 1 

Dep. Var. / Metrics Indep. Var. Model 1 

rps_start_year median_income_lag1 3.99e-02 
  (9.92e-03)*** 
 residential_revenues_lag1 -1.04e-03 
  (5.32e-04)* 
 residential_customers_lag1 1.38e-03 
  (5.96e-04)** 
 employment_rate_lag1 -7.30e-02 
  (1.23e-02)*** 
 _constant 9.69e-01 
  (4.58e-01)** 

lnsig2u _constant -1.46e+01 
  (2.86e+05) 
Observations  1,528 

* p<0.1; ** p<0.05; *** p<0.01; Parentheses contain robust std. errors; ρ=0.424 

 
TABLE A.6: Random Effects Probit Analysis of RPS Start Year, Model 2 

Dep. Var. / Metrics Indep. Var. Model 2 

rps_start_year mheb_lag1 -3.04e-01 
  (1.33e-01)** 
 median_income_lag1 2.86e-02 

  (1.09e-02)*** 
 employment_rate_lag1 -7.53e-02 
  (1.73e-02)*** 
 _constant 2.15e+00 
  (8.75e-01)** 

lnsig2u _constant -1.37e+01 
  (6.80e+04) 
Observations  1,528 

* p<0.1; ** p<0.05; *** p<0.01; Parentheses contain robust std. errors 

 

The most significant dependent variables in model 1 for RPS (Table A.5) are again 

median_income_lag1 and employment_rate_lag1, which are subsequently included in model 2. 

Unfortunately, model 2 indicates that a one-year lag on MHEB does still significantly predict the 

start year of an RPS policy. Table A.7 below presents a model that expands upon Equation A.4. I 

began with four lags on each MHEB component variable (and employment_rate) and iteratively 

removed insignificant lags until all remaining variables had significant coefficient estimates. 
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TABLE A.7: Random Effects Probit Analysis of RPS Start Year, Model 3 

Dep. Var. / Metrics Indep. Var. Model 3 

rps_start_year mheb_lag1 -2.22e-01 
  (1.73e-01) 
 median_income_lag3 -2.28e-01 
  (4.75e-02)*** 
 median_income_lag4 2.63e-01 
  (4.51e-02)*** 
 residential_revenues_lag1 3.17e-03 
  (9.15e-04)*** 
 residential_revenues_lag3 -2.45e-03 
  (8.37e-04)*** 
 residential_revenues_lag4 -2.34e-03 
  (7.73e-04)*** 
 residential_customers_lag1 1.94e-03 
  (6.86e-04)*** 
 employment_rate_lag1 1.04e-01 
  (4.24e-02)** 
 employment_rate_lag4 -1.77e-01 
  (3.87e-02)*** 
 _constant 1.42e+00 
  (8.79e-01) 

lnsig2u _constant -1.30e+01 
  (3.26e+04) 
Observations  1,528 

* p<0.1; ** p<0.05; *** p<0.01; Parentheses contain robust std. errors; Some insignificant lags have been 
removed to save space 

 

As Table A.7 shows, mheb_lag1 is no longer a statistically significant predictor of 

rps_start_year when several lags on the various MHEB components and on employment_rate 

are included. Again, this should also hold true for subsequent lags on MHEB when equivalent 

lags on the MHEB component variables are included. Notably, the model does not contain the 

same lags for all three MHEB components, which means that mheb_lag1 is not duplicated. 
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TABLE A.8: Random Effects Probit Analysis of Deregulation Start Year, Model 1 

Dep. Var. / Metrics Indep. Var. Model 1 

deregulation_start_year median_income_lag1 8.84e-02 
  (1.23e-02)*** 
 residential_revenue_lag1 -1.89e-03 
  (9.58e-04)** 
 residential_customers_lag1 2.81e-03 
  (1.18e-03)** 
 employment_rate_lag1 -1.01e-01 
  (9.50e-03)*** 
 _constant 6.45e-01 
  (2.69e-01)** 

lnsig2u _constant -1.21e+00 
  (3.77e-01)*** 
Observations  1,588 

* p<0.1; ** p<0.05; *** p<0.01; Parentheses contain robust std. errors; ρ=0.377 

 
TABLE A.9: Random Effects Probit Analysis of Deregulation Start Year, Model 2 

Dep. Var. / Metrics Indep. Var. Model 2 

deregulation_start_year mheb_lag1 -3.08e-01 
  (2.52e-01) 
 median_income_lag1 8.17e-02 
  (1.33e-02)*** 
 employment_rate_lag1 -9.72e-02 
  (1.05e-02)*** 
 _constant 1.51e+00 
  (5.94e-01)** 

lnsig2u _constant -1.10e+00 
  (4.22e-01)*** 
Observations  1,588 

* p<0.1; ** p<0.05; *** p<0.01; Parentheses contain robust std. errors 

 

The most significant dependent variables in model 1 for deregulation (Table A.8) are 

once more employment_rate_lag1 and median_income_lag1, which are subsequently included 

in model 2. As with the analyses of eers_start_year and decoupling_start_year above, 

mheb_lag1 no longer significantly predicts deregulation_start_year when these components 

are included. The same should hold true for further lags on MHEB. 
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 The primary takeaway from this analysis is that including lags on employment rates 

and/or relevant MHEB components in the primary fixed effects analysis in this study should 

largely account for the endogeneity that would result if policymakers tend to implement EERS, 

RPS, deregulation, or decoupling policies based on changes in MHEB. Identical lags for all three 

MHEB component variables – median income, residential revenues, and residential customers – 

should not be included at the same time, however, as doing so would be similar to including 

lags on MHEB itself. This would pose a problem in the primary fixed effects analysis because 

autoregressive models with panel data induce serial correlation in the errors by definition. 

Luckily, it appears from the analysis in this appendix that doing so would not be necessary in 

most cases. The full analysis in Chapter 4 therefore incorporates several lags on the variables 

identified above for each individual policy, and the models are fitted to the appropriate number 

of lags. Yet as this analysis identifies that all three MHEB components are significant predictors 

of an RPS policy start year, all three must be included in the individual analysis of RPS policies in 

Chapter 4, as well as in the combined analysis that considers the effects of all three policies 

simultaneously. I address the resulting potential AR(1) serial correlation in the full analysis in 

Chapter 4. 
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APPENDIX B: SUPPLEMENTAL CHARTS AND FIGURES 

TABLE B.1:  Policy Implementation by State 

State Deregulation RPS EERS Decoupling 

Alabama         

Alaska         

Arizona   2006 2010   

Arkansas     2010 2007 (2010) 

California 1998 (2001) 2002 2004 1982 (1996); 2004 

Colorado   2004 2007   

Connecticut 2000 1998 1998 2007* 

Delaware 2000 2005     

District of Columbia 2001 2005   2009 

Florida         

Georgia         

Hawaii   2001 2009 2010 

Idaho       2013* 

Illinois 1999 2007 2007   

Indiana     2010 (2014)   

Iowa   1983 2008   

Kansas         

Kentucky         

Louisiana         

Maine 2000 1999 2012 2014* 

Maryland 2000 2004 2008 2007 

Massachusetts 1998 1997 2008 2011* 

Michigan 1998 2008 (2015) 2008   

Minnesota   2007 2007   

Mississippi         

Missouri   2007     

Montana   2005 (2015)     

Nebraska         

Nevada   1997 2005   

New Hampshire 1998* 2007     

New Jersey 1999 1999     

New Mexico   2002 2008   

New York 1998 2004 2008 2007 

North Carolina   2008 2008   

North Dakota         
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State Deregulation RPS EERS Decoupling 

Ohio 2001 2008 2008 (2014) 2011* 

Oklahoma         

Oregon   2007 2010 2009* 

Pennsylvania 1999 2004 2012   

Rhode Island 1998 2004 2006 2011 

South Carolina         

South Dakota         

Tennessee         

Texas 2002* 1999 1999   

Utah         

Vermont   2015 2007 2006 

Virginia 2002 (2007)       

Washington   2006 2006 2014* 

West Virginia         

Wisconsin   1998 (2015) 2010   

Wyoming         
States that were included in the analysis are in bold italics. Parentheses indicate years in which policies 
were revoked or expired. Following the main analysis, this table indicates the year in which a given policy 
was actually implemented (or revoked), not the year in which it was approved by the state legislature or 
public utility commission. Where a state policy was implemented for different IOUs in different years, an 
asterisk (*) indicates the year in which the policy was first implemented for at least one IOU. 
Sources: ACEEE (2016a), ACEEE (2016b), Electric Choice (2016), IEE (2013), NCSL (2016), Stanford University (2003), 
Swadley and Yücel (2011), Williams (2016) 
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TABLE B.2: Included IOUs by State 

State IOU (Common Name) 
Avg. Residential 

Customers 
(Bundled Service) 

Alabama Alabama Power               1,164,774  

Arizona 

Arizona Public Service (APS)                  859,571  

Tucson Electric Power (TEP)                  332,488  

UNS Electric                    69,119  

Arkansas 

Empire District Electric                      3,254  

Entergy Arkansas                  559,441  

Oklahoma Gas & Electric                    52,274  

Southwestern Electric Power (SWEPCO)                    89,534  

California 

Pacific Gas & Electric (PG&E)               4,259,052  

PacifiCorp                    34,038  

San Diego Gas & Electric (SDG&E)               1,150,082  

Southern California Edison (SCE)               4,034,370  

Colorado Xcel Energy               1,067,142  

Connecticut 
Connecticut Light & Power (CL&P)                  937,459  

United Illuminating (UI)                  249,410  

Delaware Delmarva Power                  245,972  

District of Columbia Potomac Electric Power (PEPCO)                  200,487  

Idaho 

Avista                    95,233  

Idaho Power                  347,371  

PacifiCorp                    50,442  

Illinois 
Ameren Illinois                  920,820  

Commonwealth Edison (ComEd)               2,970,190  

Indiana 

Duke Energy Indiana                  642,231  

Indiana Michigan Power                  391,528  

Indianapolis Power & Light                  400,813  

Northern Indiana Public Service (NIPSCO)                  386,375  

Southern Indiana Gas & Electric                  119,061  

Kansas 

Empire District Electric                      8,610  

Kansas City Power & Light (KCP&L)                  193,828  

Kansas Gas & Electric                  266,305  

Westar Energy                  306,586  

Kentucky 

Duke Energy Kentucky                  113,951  

Kentucky Power                  142,300  

Kentucky Utilities (KU)                  395,238  

Louisville Gas & Electric (LGE)                  335,059  
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State IOU (Common Name) 
Avg. Residential 

Customers 
(Bundled Service) 

Maine Central Maine Power                  150,745  

Maryland 

Baltimore Gas & Electric                  988,962  

Delmarva Power                  155,043  

Potomac Edison                  195,902  

Potomac Electric Power (PEPCO)                  414,681  

Massachusetts 

Eversource                  842,937  

National Grid                  977,498  

Unitil (Fitchburg Gas & Elec Light)                    23,032  

Western Massachusetts Electric Company (WMECO)                  177,493  

Minnesota 

Allete                  113,962  

Otter Tail Power                    46,469  

Xcel Energy               1,039,958  

Mississippi 
Entergy Mississippi                  348,827  

Mississippi Power                  154,318  

Missouri 
Kansas City Power & Light (KCP&L)                  233,206  

KCP&L Greater Missouri Operations                  234,569  

Nevada 
Nevada Power                  615,032  

Sierra Pacific Power                  248,229  

New Hampshire 
Liberty Utilities (Granite State Electric)                    33,063  

Public Service of New Hampshire (PSNH)                  381,995  

New Jersey 

Atlantic City Electric                  439,241  

Jersey Central Power & Light                  880,007  

Public Service Elec & Gas (PSEG)               1,734,439  

Rockland Electric                    60,297  

New York 

Central Hudson Gas & Electric                  233,161  

Consolidated Edison (Con Ed)               2,467,339  

National Grid               1,314,418  

New York State Electric & Gas (NYSEG)                  670,099  

Orange & Rockland Utilities                  143,710  

Rochester Gas & Electric                  276,245  

Ohio 

AEP Ohio               1,175,933  

Cleveland Electric Illuminating                  443,635  

Dayton Power & Light                  416,932  

Duke Energy Ohio                  518,227  

Ohio Edison                  657,570  

Toledo Edison                  191,736  

Oregon 
Idaho Power                    13,017  

PacifiCorp                  439,912  
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State IOU (Common Name) 
Avg. Residential 

Customers 
(Bundled Service) 

Oregon Portland General Electric                  665,974  

Pennsylvania 

Metropolitan Edison (MetEd)                  426,879  

PECO Energy               1,224,759  

Pennsylvania Electric (Penelec)                  466,212  

Pennsylvania Power                  122,571  

PPL Electric Utilities               1,031,073  

West Penn Power                  572,410  

Rhode Island National Grid                  382,919  

South Dakota 

Black Hills Power                    49,037  

Montana-Dakota Utilities                      6,726  

NorthWestern Energy                    47,279  

Otter Tail Power                      8,776  

Xcel Energy                    65,052  

Texas 

El Paso Electric                  227,655  

Entergy Texas                  325,743  

Southwestern Electric Power (SWEPCO)                  138,160  

Xcel Energy                  214,423  

Vermont Green Mountain Power                  206,256  

Virginia 

Appalachian Power                  424,772  

Dominion               1,893,924  

Kentucky Utilities (KU)                    24,857  

Washington 

Avista                  195,851  

PacifiCorp                    99,406  

Puget Sound Energy                  870,271  

West Virginia 

Appalachian Power                  365,335  

Monongahela Power (Mon Power)                  312,708  

Potomac Edison                  101,996  

Wheeling Power                    35,632  

Wisconsin 
Wisconsin Electric Power                  928,944  

Wisconsin Public Service                  355,041  

Wyoming 
Montana-Dakota Utilities                    11,719  

PacifiCorp                  102,423  

Source: EIA (2016)
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FIGURE B.1: Service Territories of Included IOUs and Metro Area Coverage 

 
Map produced by author. Data sources: ArcGIS Online (2013), ArcGIS Open Data (2016), service territory shapefiles and graphic files from state public utility 
commissions and individual utilities 

 



  

APPENDIX C: FULL REGRESSION RESULTS AND TESTS FOR JOINT SIGNIFICANCE 
 

The tables in this appendix supplement the results in Chapter 4. Tables C.1 to C.4 

correspond to the combined policy analysis in Table 4.5, Tables C.5 to C.8 correspond to the 

individual energy efficiency resource standard (EERS) analysis in Table 4.6, Tables C.9 and C.10 

correspond to the individual renewable portfolio standard (RPS) analysis in Table 4.7, and 

Tables C.11 and C.12 correspond to the individual deregulation analysis in Table 4.8. Again, I 

defined four models for each policy and for the combined analysis. Model (1) excludes lags on 

expenditures, model (3) includes two lags on the expenditure variables and on commercial and 

industrial (C&I) revenues, and models (2) and (4) are sensitivity analyses of models (1) and (3), 

respectively, that exclude any records for which I interpolated data. 

For each analysis below, the first table provides the baseline model that does not 

include lags on the expenditure variables, as well as the full versions of models (1) and (2) 

derived from this baseline. The table includes any variables that I removed in Chapter 4 to save 

space. The second table presents the results of tests for joint significance: one test of 

coefficients in the baseline model that are individually insignificant at the 10% level, one test of 

coefficients in model (1) that are individually insignificant at the 10% level, and one test of 

coefficients in model (2) that are individually insignificant at the 10% level. The third table 

provides the same information as the first, but for the models that include lags on expenditures 

variables (models (3) and (4)). The fourth table provides tests of joint significance for these 

models. The notes beneath the first and third tables for each analysis include the value of ρ 

used in the initial Prais-Winsten data transformation, along with other information. 
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One notable result of the analysis in this appendix is that individually insignificant 

coefficients in some models are jointly significant at the 10% level or lower. This indicates 

multicollinearity between the variables, though it does not alter the analysis in Chapter 4. 

TABLE C.1: Baseline and Complete Fitted Models for Combined Analysis, Without Cost Lags 

Variables Baseline (1) (2) 

eers_policy 1.02e-01 1.02e-01 7.53e-02 
 (3.64e-02)*** (3.64e-02)*** (5.04e-02) 
rps_policy 4.26e-02 4.26e-02 5.13e-02 

 (1.84e-02)** (1.84e-02)** (2.23e-02)** 
Deregulation -7.74e-02 -7.74e-02 -8.66e-02 
 (2.24e-02)*** (2.24e-02)*** (2.91e-02)*** 
eers_policyXrps_policy -4.84e-02 -4.84e-02 -3.13e-02 
 (4.65e-02) (4.65e-02) (6.37e-02) 
eers_policyXrps_policyXderegulation -4.51e-02 -4.51e-02 -4.38e-03 
 (4.49e-02) (4.49e-02) (5.15e-02) 
decoupling_policy 6.01e-02 6.01e-02 5.95e-02 
 (3.73e-02) (3.73e-02) (5.80e-02) 
eers_policyXdecoupling_policy -1.26e-01 -1.26e-01 -1.27e-01 
 (3.91e-02)*** (3.91e-02)*** (5.26e-02)** 
eers_policyXrps_policyXderegulationXdecoupling_policy 1.82e-01 1.82e-01 2.10e-01 
 (6.16e-02)*** (6.16e-02)*** (7.00e-02)*** 
c&i_revenues 8.70e-05 8.70e-05 8.95e-05 
 (3.83e-05)** (3.83e-05)** (4.06e-05)** 
c&i_revenuesXdecoupling_policy -1.78e-05 -1.78e-05 -1.68e-05 
 (7.69e-06)** (7.69e-06)** (9.54e-06)* 
power_expenditures 1.65e-05 1.65e-05 2.65e-05 
 (8.98e-06)* (8.98e-06)* (1.81e-05) 
t&d_expenditures 3.46e-04 3.46e-04 2.93e-04 
 (9.31e-05)*** (9.31e-05)*** (8.37e-05)*** 
heating_degree_days 9.88e-05 9.88e-05 1.00e-04 
 (9.42e-06)*** (9.42e-06)*** (1.07e-05)*** 
cooling_degree_days 3.47e-04 3.47e-04 3.34e-04 
 (2.46e-05)*** (2.46e-05)*** (2.81e-05)*** 
median_income_lag1 2.95e-03 2.95e-03 2.67e-03 
 (3.24e-03) (3.24e-03) (3.63e-03) 
median_income_lag2 -1.13e-02 -1.13e-02 -1.42e-02 
 (3.16e-03)*** (3.16e-03)*** (3.58e-03)*** 
median_income_lag3 -9.48e-03 -9.48e-03 -1.05e-02 
 (3.31e-03)*** (3.31e-03)*** (3.88e-03)*** 
median_income_lag4 -4.33e-03 -4.33e-03  
 (2.35e-03)* (2.35e-03)*  
residential_revenues_lag1 9.75e-05 9.75e-05 9.35e-05 
 (5.20e-05)* (5.20e-05)* (5.37e-05)* 
residential_revenues_lag2 1.35e-04 1.35e-04 1.43e-04 
 (5.85e-05)** (5.85e-05)** (6.49e-05)** 
residential_revenues_lag3 2.38e-04 2.38e-04 2.22e-04 
 (5.97e-05)*** (5.97e-05)*** (6.17e-05)*** 
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residential_revenues_lag4 1.21e-04 1.21e-04 1.08e-04 
 (4.31e-05)*** (4.31e-05)*** (4.27e-05)** 
residential_customers_lag1 8.01e-05 8.01e-05 1.05e-04 
 (1.21e-04) (1.21e-04) (1.28e-04) 
residential_customers_lag2 -3.19e-04 -3.19e-04 -3.67e-04 
 (1.14e-04)*** (1.14e-04)*** (1.58e-04)** 
residential_customers_lag3 -2.52e-04 -2.52e-04 -2.64e-04 
 (1.11e-04)** (1.11e-04)** (1.68e-04) 
residential_customers_lag4 -3.92e-04 -3.92e-04 -3.50e-04 
 (7.90e-05)*** (7.90e-05)*** (9.08e-05)*** 
employment_rate -3.59e-03 -3.59e-03 -2.99e-03 
 (3.93e-03) (3.93e-03) (4.06e-03) 
employment_rate_lag1 -1.76e-02 -1.76e-02 -1.88e-02 
 (5.50e-03)*** (5.50e-03)*** (6.18e-03)*** 
employment_rate_lag2 1.55e-02 1.55e-02 1.34e-02 
 (4.34e-03)*** (4.34e-03)*** (4.31e-03)*** 
employment_rate_lag3 1.40e-02 1.40e-02 1.74e-02 
 (5.54e-03)** (5.54e-03)** (5.94e-03)*** 
employment_rate_lag4 1.86e-02 1.86e-02 1.80e-02 
 (5.05e-03)*** (5.05e-03)*** (5.41e-03)*** 
dsm_percust_annual_25 -5.63e-03 -5.63e-03 -1.50e-02 
 (4.36e-02) (4.36e-02) (4.51e-02) 
dsm_percust_annual_50 -2.24e-03 -2.24e-03 -1.69e-02 
 (5.09e-02) (5.09e-02) (5.28e-02) 
dsm_percust_annual_75 1.84e-02 1.84e-02 9.33e-03 
 (5.13e-02) (5.13e-02) (5.30e-02) 
dsm_percust_annual_100 2.76e-02 2.76e-02 1.68e-02 
 (5.21e-02) (5.21e-02) (5.38e-02) 
dsm_percust_annual_max 4.97e-02 4.97e-02 3.89e-02 
 (5.87e-02) (5.87e-02) (6.18e-02) 
dsm_percust_4yrs_50 2.02e-02 2.02e-02 1.06e-02 
 (6.91e-02) (6.91e-02) (6.75e-02) 
dsm_percust_4yrs_100 3.41e-02 3.41e-02 3.00e-02 
 (7.02e-02) (7.02e-02) (6.83e-02) 
dsm_percust_4yrs_150 2.69e-02 2.69e-02 2.07e-02 
 (7.21e-02) (7.21e-02) (7.07e-02) 
dsm_percust_4yrs_200 5.38e-02 5.38e-02 4.96e-02 
 (7.19e-02) (7.19e-02) (7.00e-02) 
dsm_percust_4yrs_max 3.74e-02 3.74e-02 3.42e-02 
 (7.26e-02) (7.26e-02) (7.11e-02) 
_constant -2.75e-03 -2.75e-03 -1.25e-03 
 (1.24e-02) (1.24e-02) (1.27e-02) 

R2 Within 0.6257 0.6257 0.6570 
R2 Between 0.3304 0.3304 0.3885 
R2 Overall 0.5765 0.5765 0.6050 
Observations 2,310 2,310 1,852 
Groups 105 105 105 

* p<0.1; ** p<0.05; *** p<0.01; Parentheses contain clustered std. errors; ρ=0.790 
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TABLE C.2: Tests for Joint Significance in Combined Analysis, Without Cost Lags 

Baseline and Model (1) 
F(16, 104) = 1.22 
Prob > F = 0.2622 
 

Model (2) 
F(19, 104) = 1.37 
Prob > F = 0.1592 

 
TABLE C.3: Baseline and Complete Fitted Models for Combined Analysis, With Cost Lags 

Variables Baseline (3) (4)  

eers_policy -1.64e-02 -1.82e-03 -1.87e-02 
 (3.64e-02) (3.57e-02) (4.77e-02) 
rps_policy 4.69e-02 4.59e-02 5.97e-02 
 (1.80e-02)** (1.65e-02)*** (2.00e-02)*** 
Deregulation -4.17e-02 -5.20e-02 -5.80e-02 
 (2.31e-02)* (2.07e-02)** (2.52e-02)** 
eers_policyXrps_policy 1.07e-02 6.52e-03 1.26e-02 
 (4.73e-02) (4.58e-02) (6.12e-02) 
eers_policyXrps_policyXderegulation -3.01e-02 -4.33e-02 -9.81e-03 
 (4.45e-02) (4.36e-02) (4.90e-02) 
decoupling_policy 1.63e-02 1.43e-02 -9.76e-03 
 (3.44e-02) (3.49e-02) (4.92e-02) 
eers_policyXdecoupling_policy -5.04e-02 -5.82e-02 -6.27e-02 
 (4.24e-02) (4.18e-02) (5.23e-02) 
eers_policyXrps_policyXderegulationXdecoupling_policy 1.27e-01 1.44e-01 1.91e-01 
 (6.13e-02)** (6.18e-02)** (7.05e-02)*** 
c&i_revenues 1.21e-04 1.20e-04 1.20e-04 
 (4.62e-05)** (4.36e-05)*** (4.53e-05)*** 
c&i_revenues_lag1 -3.90e-06   
 (3.26e-05)   
c&i_revenues_lag2 3.57e-05   
 (1.97e-05)*   
c&i_revenuesXdecoupling_policy -8.32e-06 -2.78e-06 4.46e-07 
 (8.86e-06) (6.69e-06) (8.27e-06) 
power_expenditures 1.68e-05 1.79e-05 2.76e-05 
 (1.07e-05) (1.07e-05)* (1.97e-05) 
exppower_lag1 7.66e-06   
 (5.51e-06)   
exppower_lag2 4.53e-07   
 (4.16e-06)   
t&d_expenditures 2.21e-04 2.50e-04 2.03e-04 
 (8.69e-05)** (8.64e-05)*** (8.20e-05)** 
t&d_expenditures_lag1 1.65e-04 1.80e-04 2.17e-04 
 (8.48e-05)* (8.47e-05)** (9.26e-05)** 
t&d_expenditures_lag2 -3.77e-07   
 (8.08e-05)   
heating_degree_days 9.07e-05 8.95e-05 9.08e-05 
 (9.11e-06)*** (7.80e-06)*** (9.21e-06)*** 
cooling_degree_days 3.18e-04 3.20e-04 3.04e-04 
 (2.84e-05)*** (2.49e-05)*** (3.08e-05)*** 
median_income_lag1 1.54e-02 1.17e-02 1.31e-02 
 (3.42e-03)*** (3.22e-03)*** (3.76e-03)*** 
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median_income_lag2 -1.64e-03 -5.22e-03 -7.19e-03 
 (3.18e-03) (3.03e-03)* (3.51e-03)** 
median_income_lag3 -1.07e-02 -1.17e-02 -1.15e-02 
 (3.37e-03)*** (3.04e-03)*** (3.52e-03)*** 
median_income_lag4 -1.13e-02 -1.21e-02 -1.01e-02 
 (2.47e-03)*** (2.53e-03)*** (2.94e-03)*** 
residential_revenues_lag1 -1.30e-05   
 (6.21e-05)   
residential_revenues_lag2 -3.04e-05   
 (5.27e-05)   
residential_revenues_lag3 7.62e-05   
 (4.75e-05)   
residential_revenues_lag4 -2.47e-05   
 (4.23e-05)   
residential_customers_lag1 2.86e-04   
 (1.58e-04)*   
residential_customers_lag2 -1.49e-04   
 (1.15e-04)   
residential_customers_lag3 4.96e-05   
 (1.10e-04)   
residential_customers_lag4 -1.24e-04   
 (8.09e-05)   
employment_rate -2.80e-02 -2.76e-02 -2.56e-02 
 (4.85e-03)*** (4.31e-03)*** (4.56e-03)*** 
employment_rate_lag1 -4.15e-02 -3.89e-02 -4.23e-02 
 (6.07e-03)*** (5.26e-03)*** (5.92e-03)*** 
employment_rate_lag2 -6.38e-03   
 (4.91e-03)   
employment_rate_lag3 -2.33e-03   
 (6.04e-03)   
employment_rate_lag4 -1.23e-02   
 (7.15e-03)*   
dsm_percust_annual_25 -3.18e-02 -3.12e-02 -4.49e-02 
 (5.37e-02) (5.28e-02) (5.49e-02) 
dsm_percust_annual_50 -3.99e-02 -3.91e-02 -5.89e-02 
 (6.16e-02) (6.05e-02) (6.29e-02) 
dsm_percust_annual_75 -1.75e-02 -1.70e-02 -3.18e-02 
 (6.26e-02) (6.17e-02) (6.42e-02) 
dsm_percust_annual_100 -5.71e-03 -7.02e-03 -2.20e-02 
 (6.41e-02) (6.29e-02) (6.53e-02) 
dsm_percust_annual_max 1.50e-02 2.48e-02 9.53e-03 
 (7.29e-02) (7.30e-02) (7.70e-02) 
dsm_percust_4yrs_50 -2.23e-02 -2.72e-02 -3.27e-02 
 (4.97e-02) (5.15e-02) (5.24e-02) 
dsm_percust_4yrs_100 -1.96e-02 -2.27e-02 -1.76e-02 
 (5.11e-02) (5.23e-02) (5.30e-02) 
dsm_percust_4yrs_150 -3.82e-02 -3.64e-02 -3.21e-02 
 (5.47e-02) (5.53e-02) (5.63e-02) 
dsm_percust_4yrs_200 -1.05e-02 -1.15e-02 8.90e-04 
 (5.46e-02) (5.51e-02) (5.59e-02) 
dsm_percust_4yrs_max -2.99e-02 -2.92e-02 -1.37e-02 
 (5.57e-02) (5.60e-02) (5.71e-02) 
_constant 2.15e+00 1.80e+00 1.80e+00 
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 (1.98e-01)*** (1.23e-01)*** (1.28e-01)*** 

R2 Within 0.2480 0.2352 0.2320 
R2 Between 0.0177 0.1340 0.1242 
R2 Overall 0.1376 0.1966 0.1806 
Observations 1,995 2,100 1,646 
Groups 105 105 105 

* p<0.1; ** p<0.05; *** p<0.01; Parentheses contain clustered std. errors; ρ=0.790 

 
TABLE C.4: Tests for Joint Significance in Combined Analysis, With Cost Lags

Baseline 
F(31, 104) = 2.88 
Prob > F = 0.0000 
 

Model (3) 
F(17, 104) = 1.43 
Prob > F = 0.1382 
 

Model (4) 
F(17, 104) = 0.99 
Prob > F = 0.4733 

TABLE C.5: Baseline and Complete Fitted Models for EERS Analysis, Without Cost Lags 

Variables Baseline (1) (2) 

eers_policy 7.14e-02 6.48e-02 5.13e-02 
 (3.70e-02)* (3.70e-02)* (5.54e-02) 
eers_policy_lag1 7.36e-02 7.40e-02 7.82e-02 
 (2.25e-02)*** (2.24e-02)*** (2.31e-02)*** 
eers_policy_lag2 5.47e-02 5.73e-02 5.89e-02 
 (1.97e-02)*** (1.99e-02)*** (2.30e-02)** 
eers_policy_lag3 5.21e-02 5.42e-02 5.51e-02 
 (2.49e-02)** (2.47e-02)** (2.79e-02)* 
eers_policy_lag4 2.22e-03   
 (2.05e-02)   
eers_policy_lag5 2.54e-02   
 (1.97e-02)   
eers_policyXrps_policy -1.36e-02 -6.61e-03 9.73e-05 
 (4.60e-02) (4.55e-02) (6.73e-02) 
eers_policyXderegulation -3.40e-02 -3.39e-02 -1.08e-02 
 (4.19e-02) (4.21e-02) (5.04e-02) 
decoupling_policy 5.31e-02 5.48e-02 5.60e-02 
 (3.71e-02) (3.76e-02) (5.66e-02) 
eers_policyXdecoupling_policy -1.27e-02 -1.05e-02 -8.03e-04 
 (3.48e-02) (3.45e-02) (4.80e-02) 
c&i_revenues 8.11e-05 8.06e-05 7.58e-05 
 (3.30e-05)** (3.30e-05)** (3.18e-05)** 
c&i_revenuesXdecoupling_policy -2.02e-05 -2.16e-05 -2.20e-05 
 (7.79e-06)** (7.81e-06)*** (9.33e-06)** 
power_expenditures 1.31e-05 1.34e-05 2.14e-05 
 (9.10e-06) (9.19e-06) (1.75e-05) 
t&d_expenditures 3.08e-04 3.13e-04 2.56e-04 
 (9.71e-05)*** (9.66e-05)*** (8.78e-05)*** 
heating_degree_days 9.16e-05 9.19e-05 9.22e-05 
 (9.37e-06)*** (9.34e-06)*** (1.04e-05)*** 
cooling_degree_days 3.35e-04 3.40e-04 3.24e-04 
 (2.48e-05)*** (2.44e-05)*** (2.70e-05)*** 
median_income_lag1 3.38e-03 2.91e-03 2.85e-03 
 (3.38e-03) (3.33e-03) (3.72e-03) 
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median_income_lag2 -9.70e-03 -1.12e-02 -1.27e-02 
 (3.27e-03)*** (3.12e-03)*** (3.65e-03)*** 
median_income_lag3 -7.60e-03 -8.67e-03 -8.31e-03 
 (3.23e-03)** (3.23e-03)*** (3.86e-03)** 
median_income_lag4 -3.88e-03   
 (2.32e-03)*   
employment_rate -4.81e-03 -5.66e-03 -4.54e-03 
 (3.75e-03) (3.67e-03) (3.87e-03) 
employment_rate_lag1 -1.70e-02 -1.60e-02 -1.77e-02 
 (5.46e-03)*** (5.42e-03)*** (6.22e-03)*** 
employment_rate_lag2 1.57e-02 1.62e-02 1.38e-02 
 (4.53e-03)*** (4.54e-03)*** (4.55e-03)*** 
employment_rate_lag3 1.50e-02 1.60e-02 1.86e-02 
 (5.73e-03)** (5.68e-03)*** (6.16e-03)*** 
employment_rate_lag4 1.66e-02 1.44e-02 1.57e-02 
 (5.22e-03)*** (5.14e-03)*** (5.67e-03)*** 
dsm_percust_annual_25 -6.48e-03 -8.52e-03 -1.71e-02 
 (4.49e-02) (4.53e-02) (4.61e-02) 
dsm_percust_annual_50 -1.59e-02 -1.73e-02 -3.05e-02 
 (5.23e-02) (5.27e-02) (5.39e-02) 
dsm_percust_annual_75 -6.68e-03 -8.44e-03 -1.67e-02 
 (5.31e-02) (5.34e-02) (5.47e-02) 
dsm_percust_annual_100 -3.02e-03 -3.74e-03 -1.23e-02 
 (5.38e-02) (5.42e-02) (5.54e-02) 
dsm_percust_annual_max 1.97e-02 1.95e-02 1.39e-02 
 (6.14e-02) (6.13e-02) (6.36e-02) 
dsm_percust_4yrs_50 1.20e-02 1.38e-02 1.58e-03 
 (7.05e-02) (6.93e-02) (6.90e-02) 
dsm_percust_4yrs_100 2.37e-02 2.49e-02 2.02e-02 
 (7.16e-02) (7.06e-02) (6.99e-02) 
dsm_percust_4yrs_150 6.30e-03 8.77e-03 1.19e-03 
 (7.39e-02) (7.30e-02) (7.27e-02) 
dsm_percust_4yrs_200 2.52e-02 2.97e-02 2.24e-02 
 (7.36e-02) (7.26e-02) (7.20e-02) 
dsm_percust_4yrs_max 4.08e-03 1.05e-02 5.21e-03 
 (7.44e-02) (7.31e-02) (7.27e-02) 
_constant -3.99e-02 -4.05e-02 -3.92e-02 
 (1.28e-02)*** (1.30e-02)*** (1.35e-02)*** 

R2 Within 0.6181 0.6176 0.6495 
R2 Between 0.1081 0.1012 0.1753 
R2 Overall 0.5306 0.5290 0.5580 
Observations 2,310 2,310 1,852 
Groups 105 105 105 

* p<0.1; ** p<0.05; *** p<0.01; Parentheses contain clustered std. errors; ρ=0.793 

 
TABLE C.6: Tests for Joint Significance in EERS Analysis, Without Cost Lags 

Baseline 
F(19, 104) = 0.88 
Prob > F = 0.6120 
 

Model (1) 
F(17, 104) = 0.92 
Prob > F = 0.5537 
 

Model (2) 
F(18, 104) = 1.02 
Prob > F = 0.4446
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TABLE C.7: Baseline and Complete Fitted Models for EERS Analysis, With Cost Lags 

Variables Baseline (3) (4) 

eers_policy -3.97e-02 -2.94e-02 -3.98e-02 
 (3.61e-02) (3.56e-02) (5.06e-02) 
eers_policy_lag1 2.92e-02 3.87e-02 4.49e-02 
 (2.16e-02) (2.13e-02)* (2.22e-02)** 
eers_policy_lag2 1.68e-02   
 (2.04e-02)   
eers_policy_lag3 7.75e-03   
 (2.56e-02)   
eers_policy_lag4 -1.09e-02   
 (1.96e-02)   
eers_policy_lag5 -1.99e-03   
 (1.96e-02)   
eers_policyXrps_policy 5.08e-02 4.21e-02 5.03e-02 
 (4.77e-02) (4.57e-02) (6.38e-02) 
eers_policyXderegulation -2.74e-02 -1.78e-02 7.07e-03 
 (4.14e-02) (4.11e-02) (4.86e-02) 
decoupling_policy 1.48e-02 2.24e-02 1.05e-02 
 (3.47e-02) (3.50e-02) (4.96e-02) 
eers_policyXdecoupling_policy 2.88e-02 2.53e-02 3.91e-02 
 (3.21e-02) (3.27e-02) (4.22e-02) 
c&i_revenues 1.19e-04 1.19e-04 1.15e-04 
 (4.54e-05)*** (4.32e-05)*** (4.63e-05)** 
c&i_revenues_lag1 3.33e-05 3.14e-05 4.21e-05 
 (2.09e-05) (2.13e-05) (1.99e-05)** 
c&i_revenues_lag2 3.21e-05 2.67e-05  
 (1.54e-05)** (1.54e-05)*  
c&i_revenuesXdecoupling_policy -1.02e-05 -1.05e-05 -1.12e-05 
 (7.29e-06) (7.52e-06) (8.55e-06) 
power_expenditures 1.76e-05 1.70e-05 2.90e-05 
 (1.11e-05) (1.11e-05) (1.96e-05) 
exppower_lag1 4.34e-06   
 (7.38e-06)   
exppower_lag2 2.94e-06   
 (3.72e-06)   
t&d_expenditures 2.15e-04 2.61e-04 2.08e-04 
 (8.89e-05)** (8.70e-05)*** (7.99e-05)** 
t&d_expenditures_lag1 1.53e-04 1.89e-04 2.24e-04 
 (8.98e-05)* (8.87e-05)** (9.74e-05)** 
t&d_expenditures_lag2 2.93e-05   
 (7.53e-05)   
heating_degree_days 8.89e-05 8.88e-05 9.07e-05 
 (8.99e-06)*** (7.83e-06)*** (9.42e-06)*** 
cooling_degree_days 3.20e-04 3.19e-04 3.07e-04 
 (2.66e-05)*** (2.49e-05)*** (3.12e-05)*** 
median_income_lag1 1.49e-02 1.18e-02 1.32e-02 
 (3.61e-03)*** (3.25e-03)*** (3.79e-03)*** 
median_income_lag2 -1.46e-03 -5.40e-03 -7.52e-03 
 (3.35e-03) (3.07e-03)* (3.57e-03)** 
median_income_lag3 -1.05e-02 -1.20e-02 -1.11e-02 
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 (3.26e-03)*** (3.01e-03)*** (3.50e-03)*** 
median_income_lag4 -1.06e-02 -1.19e-02 -9.63e-03 
 (2.37e-03)*** (2.49e-03)*** (2.90e-03)*** 
employment_rate -2.82e-02 -2.68e-02 -2.47e-02 
 (4.65e-03)*** (4.28e-03)*** (4.45e-03)*** 
employment_rate_lag1 -3.98e-02 -3.91e-02 -4.21e-02 
 (6.03e-03)*** (5.23e-03)*** (5.89e-03)*** 
employment_rate_lag2 -6.71e-03   
 (5.07e-03)   
employment_rate_lag3 -1.63e-03   
 (6.36e-03)   
employment_rate_lag4 -1.26e-02   
 (7.39e-03)*   
dsm_percust_annual_25 -3.33e-02 -3.33e-02 -4.84e-02 
 (5.45e-02) (5.32e-02) (5.54e-02) 
dsm_percust_annual_50 -4.58e-02 -4.29e-02 -6.30e-02 
 (6.25e-02) (6.09e-02) (6.34e-02) 
dsm_percust_annual_75 -2.58e-02 -2.24e-02 -3.82e-02 
 (6.36e-02) (6.22e-02) (6.48e-02) 
dsm_percust_annual_100 -1.48e-02 -1.59e-02 -3.09e-02 
 (6.54e-02) (6.34e-02) (6.59e-02) 
dsm_percust_annual_max 1.03e-02 1.65e-02 3.04e-03 
 (7.49e-02) (7.35e-02) (7.72e-02) 
dsm_percust_4yrs_50 -2.84e-02 -3.28e-02 -3.90e-02 
 (5.08e-02) (5.20e-02) (5.32e-02) 
dsm_percust_4yrs_100 -2.59e-02 -2.79e-02 -2.18e-02 
 (5.23e-02) (5.30e-02) (5.40e-02) 
dsm_percust_4yrs_150 -4.80e-02 -4.21e-02 -3.81e-02 
 (5.63e-02) (5.62e-02) (5.76e-02) 
dsm_percust_4yrs_200 -2.00e-02 -1.56e-02 -4.02e-03 
 (5.66e-02) (5.61e-02) (5.73e-02) 
dsm_percust_4yrs_max -4.07e-02 -3.60e-02 -2.17e-02 
 (5.77e-02) (5.67e-02) (5.81e-02) 
_constant 2.09e+00 1.75e+00 1.74e+00 
 (1.91e-01)*** (1.20e-01)*** (1.23e-01)*** 

R2 Within 0.2378 0.2318 0.2270 
R2 Between 0.0197 0.0857 0.0822 
R2 Overall 0.1359 0.1681 0.1540 
Observations 1,995 2,100 1,646 
Groups 105 105 105 

* p<0.1; ** p<0.05; *** p<0.01; Parentheses contain clustered std. errors; ρ=0.793 

 
TABLE C.8: Tests for Joint Significance in EERS Analysis, With Cost Lags 

Baseline 
F(29, 104) = 1.33 
Prob > F = 0.1482 
 

Model (3) 
F(18, 104) = 0.97 
Prob > F = 0.5013 
 

Model (4) 
F(16,104) = 1.14 
Prob > F = 0.3278 
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TABLE C.9: Baseline and Complete Fitted Models for RPS Analysis, Without Cost Lags 
 

Variables Baseline (1) (2) 

rps_policy 5.93e-02 5.82e-02 4.94e-02 
 (2.44e-02)** (2.45e-02)** (2.71e-02)* 
rps_policy_lag1 3.95e-02 4.25e-02 3.79e-02 
 (1.92e-02)** (1.93e-02)** (1.88e-02)** 
rps_policy_lag2 5.72e-02 5.77e-02 4.34e-02 
 (3.10e-02)* (3.10e-02)* (3.89e-02) 
rps_policy_lag3 5.11e-02 5.21e-02 3.15e-02 
 (2.53e-02)** (2.54e-02)** (2.77e-02) 
rps_policy_lag4 6.55e-02 6.57e-02 7.15e-02 
 (2.20e-02)*** (2.20e-02)*** (2.47e-02)*** 
rps_policy_lag5 4.14e-02 3.99e-02 4.37e-02 
 (2.07e-02)** (2.08e-02)* (2.23e-02)* 
eers_policyXrps_policy -5.06e-03 -4.52e-03 1.71e-02 
 (2.53e-02) (2.53e-02) (2.97e-02) 
rps_policyXderegulation -4.87e-02 -4.98e-02 -2.83e-02 
 (3.10e-02) (3.08e-02) (3.66e-02) 
decoupling_policy -2.39e-02 -2.36e-02 2.08e-02 
 (6.37e-02) (6.42e-02) (9.28e-02) 
rps_policyXdecoupling_policy 6.44e-02 6.44e-02 2.88e-02 
 (7.27e-02) (7.31e-02) (9.98e-02) 
c&i_revenues 1.13e-04 1.14e-04 1.09e-04 
 (3.90e-05)*** (3.92e-05)*** (4.20e-05)** 
c&i_revenuesXdecoupling_policy -2.14e-05 -2.19e-05 -2.47e-05 
 (8.46e-06)** (8.51e-06)** (1.02e-05)** 
power_expenditures 1.53e-05 1.59e-05 2.51e-05 
 (9.29e-06) (9.38e-06)* (1.79e-05) 
t&d_expenditures 2.45e-04 2.44e-04 2.02e-04 
 (1.01e-04)** (1.00e-04)** (9.14e-05)** 
heating_degree_days 9.72e-05 9.73e-05 9.86e-05 
 (9.35e-06)*** (9.33e-06)*** (1.07e-05)*** 
cooling_degree_days 3.43e-04 3.46e-04 3.31e-04 
 (2.40e-05)*** (2.38e-05)*** (2.75e-05)*** 
median_income_lag1 3.04e-03 2.65e-03 3.04e-03 
 (3.15e-03) (3.15e-03) (3.49e-03) 
median_income_lag2 -1.06e-02 -1.16e-02 -1.30e-02 
 (3.10e-03)*** (3.01e-03)*** (3.48e-03)*** 
median_income_lag3 -8.51e-03 -9.34e-03 -9.23e-03 
 (3.28e-03)** (3.28e-03)*** (3.88e-03)** 
median_income_lag4 -3.32e-03   
 (2.30e-03)   
residential_revenues_lag1 7.77e-05 8.18e-05 7.19e-05 
 (5.33e-05) (5.37e-05) (5.58e-05) 
residential_revenues_lag2 1.28e-04 1.27e-04 1.38e-04 
 (5.65e-05)** (5.62e-05)** (6.31e-05)** 
residential_revenues_lag3 2.31e-04 2.28e-04 2.22e-04 
 (6.00e-05)*** (5.94e-05)*** (6.31e-05)*** 
residential_revenues_lag4 1.09e-04 1.05e-04 9.81e-05 
 (4.43e-05)** (4.38e-05)** (4.57e-05)** 
residential_customers_lag1 1.38e-04 1.35e-04 1.64e-04 
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 (1.24e-04) (1.24e-04) (1.29e-04) 
residential_customers_lag2 -3.04e-04 -3.07e-04 -3.56e-04 
 (1.13e-04)*** (1.13e-04)*** (1.49e-04)** 
residential_customers_lag3 -2.58e-04 -2.61e-04 -2.67e-04 
 (1.16e-04)** (1.16e-04)** (1.77e-04) 
residential_customers_lag4 -4.14e-04 -4.11e-04 -3.71e-04 
 (8.96e-05)*** (9.09e-05)*** (1.01e-04)*** 
employment_rate -5.85e-04 -1.36e-03 -6.16e-04 
 (3.89e-03) (3.85e-03) (4.08e-03) 
employment_rate_lag1 -1.88e-02 -1.80e-02 -1.91e-02 
 (5.33e-03)*** (5.32e-03)*** (6.17e-03)*** 
employment_rate_lag2 1.63e-02 1.67e-02 1.35e-02 
 (4.24e-03)*** (4.28e-03)*** (4.20e-03)*** 
employment_rate_lag3 1.43e-02 1.50e-02 1.81e-02 

 (5.52e-03)** (5.49e-03)*** (5.98e-03)*** 
employment_rate_lag4 1.49e-02 1.32e-02 1.42e-02 
 (5.09e-03)*** (4.96e-03)*** (5.44e-03)** 
dsm_percust_annual_25 -5.76e-03 -7.67e-03 -1.33e-02 
 (4.62e-02) (4.66e-02) (4.69e-02) 
dsm_percust_annual_50 -7.31e-03 -8.94e-03 -1.84e-02 
 (5.33e-02) (5.37e-02) (5.45e-02) 
dsm_percust_annual_75 8.49e-03 6.77e-03 2.38e-03 
 (5.44e-02) (5.47e-02) (5.55e-02) 
dsm_percust_annual_100 1.52e-02 1.35e-02 8.72e-03 
 (5.54e-02) (5.57e-02) (5.68e-02) 
dsm_percust_annual_max 3.74e-02 3.55e-02 3.10e-02 
 (6.18e-02) (6.20e-02) (6.42e-02) 
dsm_percust_4yrs_50 1.79e-02 1.95e-02 9.55e-03 
 (6.93e-02) (6.83e-02) (6.79e-02) 
dsm_percust_4yrs_100 3.14e-02 3.23e-02 2.76e-02 
 (7.03e-02) (6.94e-02) (6.88e-02) 
dsm_percust_4yrs_150 1.73e-02 1.79e-02 1.22e-02 
 (7.25e-02) (7.17e-02) (7.15e-02) 
dsm_percust_4yrs_200 3.82e-02 3.95e-02 3.65e-02 
 (7.25e-02) (7.15e-02) (7.14e-02) 
dsm_percust_4yrs_max 1.64e-02 1.77e-02 1.44e-02 
 (7.31e-02) (7.22e-02) (7.20e-02) 
_constant -3.56e-02 -3.71e-02 -3.30e-02 
 (1.36e-02)** (1.36e-02)*** (1.43e-02)** 
R2 Within 0.6282 0.6279 0.6574 
R2 Between 0.2774 0.2691 0.3484 
R2 Overall 0.5708 0.5692 0.5981 
Observations 2,310 2,310 1,852 
Groups 105 105 105 

* p<0.1; ** p<0.05; *** p<0.01; Parentheses contain clustered std. errors; ρ=0.794 

 
 
 
 
 
 



  92 

TABLE C.10: Tests for Joint Significance in RPS Analysis, Without Cost Lags

Baseline 
F(20, 104) = 1.43 
Prob > F = 0.1268 
 

Model (1) 
F(18, 104) = 0.95 
Prob > F = 0.5184 
 

Model (2) 
F(22, 104) = 2.02 
Prob > F = 0.0099 
 

 
TABLE C.11: Baseline and Complete Fitted Models for Deregulation Analysis, Without Cost 
Lags 
 

Variables Baseline (1) (2) 

Deregulation -1.01e-01 -1.00e-01 -1.23e-01 
 (2.18e-02)*** (2.11e-02)*** (2.80e-02)*** 
deregulation_lag1 -6.33e-02 -6.49e-02 -8.20e-02 
 (3.41e-02)* (3.39e-02)* (5.41e-02) 
deregulation_lag2 -3.45e-02 -3.39e-02 -2.32e-02 
 (2.44e-02) (2.46e-02) (3.11e-02) 
deregulation_lag3 8.00e-02 8.07e-02 8.76e-02 
 (3.16e-02)** (3.10e-02)** (4.29e-02)** 
deregulation_lag4 -1.41e-02   
 (1.88e-02)   
deregulation_lag5 2.82e-02   
 (2.49e-02)   
eers_policyXderegulation 6.11e-03 5.78e-03 3.23e-02 
 (2.85e-02) (2.85e-02) (3.87e-02) 
rps_policyXderegulation 2.76e-02 3.22e-02 4.98e-02 
 (2.37e-02) (2.12e-02) (2.69e-02)* 
decoupling_policy 1.14e-03 1.16e-03 5.56e-03 
 (4.11e-02) (4.10e-02) (5.55e-02) 
deregulationXdecoupling_policy 6.61e-02 6.71e-02 7.75e-02 
 (2.69e-02)** (2.69e-02)** (2.76e-02)*** 
c&i_revenues 6.31e-05 6.34e-05 5.94e-05 
 (3.24e-05)* (3.26e-05)* (3.15e-05)* 
c&i_revenuesXdecoupling_policy -1.01e-05 -9.95e-06 -1.25e-05 
 (7.84e-06) (7.84e-06) (9.62e-06) 
power_expenditures 1.40e-05 1.39e-05 2.39e-05 
 (8.66e-06) (8.86e-06) (1.72e-05) 
t&d_expenditures 3.65e-04 3.75e-04 3.18e-04 
 (9.52e-05)*** (9.53e-05)*** (8.59e-05)*** 
heating_degree_days 9.46e-05 9.48e-05 9.49e-05 
 (9.47e-06)*** (9.39e-06)*** (1.04e-05)*** 
cooling_degree_days 3.33e-04 3.34e-04 3.19e-04 
 (2.46e-05)*** (2.45e-05)*** (2.73e-05)*** 
median_income_lag1 2.68e-03 2.76e-03 2.21e-03 
 (3.29e-03) (3.30e-03) (3.59e-03) 
median_income_lag2 -1.00e-02 -1.03e-02 -1.36e-02 
 (3.19e-03)*** (3.17e-03)*** (3.57e-03)*** 
median_income_lag3 -8.39e-03 -8.24e-03 -9.29e-03 
 (3.29e-03)** (3.28e-03)** (3.86e-03)** 
median_income_lag4 -4.92e-03 -4.97e-03  
 (2.39e-03)** (2.41e-03)**  
employment_rate -3.67e-03 -3.57e-03 -3.58e-03 
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 (3.79e-03) (3.79e-03) (3.89e-03) 
employment_rate_lag1 -1.90e-02 -1.89e-02 -1.95e-02 
 (5.38e-03)*** (5.38e-03)*** (6.12e-03)*** 
employment_rate_lag2 1.52e-02 1.50e-02 1.31e-02 
 (4.18e-03)*** (4.17e-03)*** (4.29e-03)*** 
employment_rate_lag3 1.56e-02 1.55e-02 1.91e-02 
 (5.42e-03)*** (5.43e-03)*** (5.82e-03)*** 
employment_rate_lag4 1.80e-02 1.82e-02 1.73e-02 
 (5.11e-03)*** (5.06e-03)*** (5.31e-03)*** 
dsm_percust_annual_25 2.40e-04 8.29e-05 -1.09e-02 
 (4.46e-02) (4.46e-02) (4.55e-02) 
dsm_percust_annual_50 1.16e-03 1.11e-03 -1.46e-02 
 (5.20e-02) (5.20e-02) (5.34e-02) 
dsm_percust_annual_75 2.15e-02 2.09e-02 1.07e-02 
 (5.28e-02) (5.28e-02) (5.40e-02) 
dsm_percust_annual_100 3.25e-02 3.15e-02 1.96e-02 
 (5.38e-02) (5.37e-02) (5.54e-02) 
dsm_percust_annual_max 5.79e-02 5.68e-02 4.39e-02 
 (6.03e-02) (6.03e-02) (6.31e-02) 
dsm_percust_4yrs_50 2.41e-02 2.40e-02 1.27e-02 
 (7.18e-02) (7.17e-02) (6.96e-02) 
dsm_percust_4yrs_100 4.00e-02 3.96e-02 3.42e-02 
 (7.27e-02) (7.27e-02) (7.04e-02) 
dsm_percust_4yrs_150 3.27e-02 3.22e-02 2.66e-02 
 (7.46e-02) (7.46e-02) (7.26e-02) 
dsm_percust_4yrs_200 5.49e-02 5.50e-02 5.15e-02 
 (7.44e-02) (7.43e-02) (7.21e-02) 
dsm_percust_4yrs_max 3.88e-02 3.83e-02 3.50e-02 
 (7.51e-02) (7.50e-02) (7.30e-02) 
_constant -9.48e-03 -8.86e-03 -8.92e-03 
 (1.44e-02) (1.40e-02) (1.43e-02) 

R2 Within 0.6191 0.6189 0.6502 
R2 Between 0.1564 0.1565 0.2148 
R2 Overall 0.5410 0.5406 0.5673 
Observations 2,310 2,310 1,852 
Groups 105 105 105 

* p<0.1; ** p<0.05; *** p<0.01; Parentheses contain clustered std. errors; ρ=0.793 

 
TABLE C.12: Tests for Joint Significance in Deregulation Analysis, Without Cost Lags 
 
Baseline 
F(20, 104) = 1.25 
Prob > F = 0.2326 
 

Model (1) 
F(18, 104) = 1.12 
Prob > F = 0.3452 
 

Model (2) 
F(18, 104) = 1.16 
Prob > F = 0.3105
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