
Chapter 3 Selected Solutions Math 145, Abstract Algebra, Duchin

3.1.2 For each binary operation ∗, does the set with ∗ define a group?

(a),(c),(e) are in the back of the book, so I’ll just do the others. Note: I will often
use the letter e for the identity element.
(b) [a ∗ b = max{a, b} on Z] This is not a group because there is no identity.
There’s no integer e such that max{a, e} = a for all a. To see this, suppose there
were such an integer e, and let a = e− 1. Then

a ∗ e = max{a, e} = max{e− 1, e} = e 6= a.

(d) [a∗b = |ab| on Z] Again, there is clearly no identity, which would be an integer
e such that |ae| = a for all a. To see this, note that |ae| is always nonnegative, so
can’t equal a if a < 0.
(f) [a ∗ b = ab on Q] So close and yet so far! This can’t be a group because 0
has no inverse (there’s nothing to multiply by 0 to get back to 1, which is clearly
the multiplicative identity). However, this is the only obstruction: if you removed
0, then it would form a group.

3.1.9 Let G = {x ∈ R : x > 0, x 6= 1}. Define a ∗ b = aln b. Prove it’s an
abelian group.

We need to show that this is a binary operation, so we check that the output is
real: yes. Next, we need associativity, identity, and inverses.

Associativity: a ∗ (b ∗ c) = aln(b∗c) = aln(b
ln c

= aln c·ln b. On the other hand,
(a ∗ b) ∗ c) = (aln b) ∗ c = (aln b)ln c = aln b·ln c by laws of exponents. These are equal.
Identity: this is kind of convenient, because we often write e for the identity, and
here the identity is the actual number e = 2.71828.... Check: e ∗ a = eln a = a and
a ∗ e = aln e = a1 = a by laws of exponents.
Inverses: given a, we need to solve aln b = e for b. Taking ln of both sides, I get
ln b · ln a = 1, so ln b = 1/ ln a, so b = e1/ ln a. (And we note that this b is a positive
real not equal to 1.) So we’ve found a b for which a ∗ b = e. Now let’s check that
for this same value, b ∗ a = e. We have: b ∗ a = (e1/ ln a)ln a = e1 = e X
Abelian: why does aln b = bln a? Because if you take the ln of either side, you get
ln a · ln b. If two numbers have the same result when you take their natural log, they
are equal (ln is injective).

3.1.11 Show that the set of all 2 × 2 real matrices of the form [m b
0 1 ] with

m 6= 0 forms a group under matrix multiplication.

Well, since these matrices have determinant m which is not 0, the set of all of them
is a subset of GL2(R), so we get associativity for free since we know that GL2(R)
is a group.
Closure: [m b

0 1 ] · [ n c0 1 ] =
[
mn mc+b
0 1

]
X (note: mn 6= 0 since m,n 6= 0.)

Identity: [ 1 0
0 1 ] is the multiplicative identity for 2× 2 matrices, and it’s in there. X

Inverses: [m b
0 1 ] ·

[
1/m −b/m
0 1

]
= [ 1 0

0 1 ], this is of the right form (note: 1/m 6= 0), and

we already know that inverses are unique in GL2(R). X
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3.1.12 In the group from the last exercise, find all elements that commute
with [ 2 0

0 1 ].

Well, [ 2 0
0 1 ] · [m b

0 1 ] = [ 2m 2b
0 1 ] while [m b

0 1 ] · [ 2 0
0 1 ] = [ 2m b

0 1 ], so these are equal iff b = 2b,

i.e., b = 0. Thus the set of such matrices is those of the form

[
m 0
0 1

]
.

3.1.13 Let S = R \ {−1}. Define a ∗ b = a + b + ab. Show that (S, ∗) is a
group.

To see that it’s a binary operation, we just have to check that a + b + ab 6= −1
whenever a, b 6= −1. We have

a+ b+ ab = −1 ⇐⇒ a(1 + b) = −1− b = −1(1 + b) ⇐⇒ (1 + a)(1 + b) = 0.

The only solutions to this are a = −1 or b = −1.
Associativity: On one hand, a∗(b∗c) = a∗(b+c+bc) = a+b+c+bc+ab+ac+abc.
On the other hand, (a ∗ b) ∗ c = (a + b + ab) ∗ c = a + b + ab + c + ac + bc + abc.
These are equal.
Identity: e = 0. We have a ∗ e = a+ 0 + 0 = a; e ∗ a = 0 + a+ 0 = a.
Inverses: Given a, we must solve a+ b+ ab = 0 for b. We have

b(1 + a) = −a =⇒ b =
−a

1 + a
.

(Note: for this to equal −1, we would have to have a/(1 + a) = 1, or a = 1 + a,
which is impossible.) We have found a solution for a ∗ b = 0, and it only remains to
check b∗a = 0 for this b. But the operation is clearly commutative because addition
and multiplication of reals are commutative, so we are done.

3.1.16 Show that a nonabelian group must have at least five distinct elements.

First let us prove a simple lemma.

Lemma: If a and b are not the identity, then their product ab can’t equal a or b.
Proof: If ab = a, then cancellation gives b = e. Likewise ab = b =⇒ a = e. �
This makes things pretty easy. There’s nothing to check for a one-element group.
For a two element group {e, a}, there’s also nothing to check, because ea = ae by
definition of identity anyway.
How about a three-element group {e, a, b}? Well, here we must have ab = e by the
lemma, and for the same reason ba = e, so the group is abelian.
Finally, we consider a four-element group {e, a, b, c}. We know that e commutes
with everything, and of course everything commutes with itself, so we only need to
show that gh = hg for all choices of g, h as distinct nonidentity letters. Without
loss of generality, it suffices to show ab = ba. But there are only two possibilities,
ab = e or ab = c. Suppose ab = e. Then b = a−1, so ba = e, and they commute.
The last case is ab = c. But then we also have ba = e or c. If ba = e, then they
are inverses, contradicting ab = c. So ba = c = ab, and we’ve shown that they
commute.
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3.1.17 Let G be a group. For a, b ∈ G, prove that (ab)n = anbn for all n ∈ Z
iff ab = ba.

Backward direction: suppose ab = ba. Then for n > 0, we can take any expression
(ab)n = (ab)(ab) · · · (ab) and swap the a letters to the left past each of the b letters,
obtaining anbn. For n = 0 there is nothing to prove, since e = e. For n < 0, we
must show that (ab)−m = a−mb−m where m = −n > 0. But the meaning of raising
something to the −m power is raising its inverse to the m power, so the left-hand
side becomes (b−1a−1)m and the right-hand side becomes (a−1)m(b−1)m. We can
now just swap them past each other once we check that they commute. But we
know that ab = ba. Taking the inverse of both sides gives us b−1a−1 = a−1b−1, so
the inverses commute and we are done.

Forward direction: if the identity is true for all n, then in particular it’s true for
n = 2. So we can assume that (ab)2 = a2b2, or in other words abab = aabb.
Canceling an a on the left and a b on the right, we get ba = ab, as desired.

3.2.5 Find all cyclic subgroups of... (b) Z8 ; (d) S4

For Z8: We have 〈0〉 = {0}. For anything relatively prime to 8, it generates the
full group, so we have 〈1〉 = 〈3〉 = 〈5〉 = 〈7〉 = Z8. We know that a generates the
same subgroup as a−1 in general, so we have 〈2〉 = 〈6〉 = {0, 2, 4, 6}. And finally
〈4〉 = {0, 4}. We’ve found four distinct cyclic subgroups in all.
For S4: there are 4! = 24 elements. There is 1 identity, there are 6 transpositions,
there are 8 3-cycles, 6 4-cycles, and three remaining elements like (12)(34) that
are products of two disjoint transpositions. Of course we have the trivial subgroup
〈e〉 = {e}. And clearly each transposition, such as (12), generates its own two-
element cyclic subgroup, such as 〈(12)〉 = {e, (12)}. So there are six of these.
Now the ones generated by 3-cycles can be generated two ways, such as 〈(123)〉 =
〈(132)〉 = {e, (123), (132)}, so there are four of these, since there are 8 3-cycles.
The four-cycles also double up: 〈(1234)〉 = 〈(1432)〉 = {e, (1234), (13)(24), (1432)}.
Note that, importantly, even though (13)(24) appears in this subgroup, it does not
generate it! So there are 3 distinct cyclic subgroups generated by 4-cycles. Finally,
the double transpositions like (13)(24) have order two, so they generate subgroups
of the form 〈(13)(24)〉 = {e, (13)(24)}, and there are three of them. So in all, we
have classified the cyclic subgroups into 1 + 6 + 4 + 3 + 3 = 17 different ones, out
of a possible 24.

3.2.9 Show that H :=
{[

1 a b
0 1 c
0 0 1

]}
is a subgroup of GL3(R).

In fact, this H is a famous group called the Heisenberg group. As we learned in
Prop 3.2.2, we need only check for closure, identity, and inverses to check H is a
subgroup. Clearly the identity is in H (letting a = b = c = 0). Closure:[

1 a b
0 1 c
0 0 1

] [
1 x y
0 1 z
0 0 1

]
=
[
1 a+x b+y+az
0 1 c+z
0 0 1

]
X

Inverses: [
1 a b
0 1 c
0 0 1

] [
1 −a ac−b
0 1 −c
0 0 1

]
=
[
1 0 0
0 1 0
0 0 1

]
X

(We already know that in GL3(R), a right-hand inverse is also a left-hand inverse.)
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3.2.11 For fixed a ∈ S, show {σ ∈ Sym(S) : σ(a) = a} is a subgroup.

Again, we check closure, identity, and inverses for the collection of permutations of
S that fix our element a.
If σ, τ both fix a, then στ(a) = σ(a) = a, so στ fixes a as well, which shows closure.
The identity map fixes every element, so in particular it fixes a.
Finally, if σ fixes a, consider σ−1. This must exist because Sym(S) is a group. But
σ(a) = a =⇒ σ−1(a) = a, so the inverse fixes a as well.

Note: a permutation of S fixing a is in obvious correspondence with a permu-
tation of S \ {a}: to specify such a map, you only need to know what it does to
all the other elements! So since Sym(S \ {a}) is a group, this is another way to
approach this question.

3.2.14 If G is abelian, show that the set of finite-order elements forms a
subgroup.

Let F = {a ∈ G : o(a) < ∞} be the set of finite-order elements. The identity has
order 1, so it’s in F . Any element has the same order as its inverse, so a ∈ F =⇒
o(a) <∞ =⇒ o(a−1) <∞ =⇒ a−1 ∈ F .
Finally, let’s check closure. Suppose a, b ∈ F and suppose o(a) = k and o(b) = m.
Then (ab)km = akmbkm by commutativity, and this equals (ak)m(bm)k = emek = e.
This means that o(ab) ≤ km <∞, so ab ∈ F . And we’re done!

3.2.18 Let G = (Q,+) and suppose H,K are subgroups of G. Prove that if
H,K 6= {0}, then H ∩K 6= {0}.

Well, by hypothesis, each of H and K contains some nonzero rational number. And
since H,K contain inverses, if they contain any number they contain its negative
as well, so each contains some positive rational number. So we can consider some
a/b ∈ H and p/q ∈ K, where a, b, p, q are positive integers, without loss of generality.
By closure under addition, the sum of a/b with itself any number of times is also
in H, so add it to itself b times, concluding that a ∈ H. Likewise p ∈ K. But then
add a to itself p times to find that pa ∈ H, and add p to itself a times to find that
pa ∈ K. So both groups contain the nonzero integer pa. �

3.2.20 Compute the centralizer in GL2(R) of the matrix [ 1 1
0 1 ].

Recall that the centralizer of g is the set of all elements commuting with g. Let’s
take a matrix A =

[
a b
c d

]
; we’ll suppose this commutes with [ 1 1

0 1 ] and see what this
tells us about A.[

a b
c d

]
[ 1 1
0 1 ] =

[
a a+b
c c+d

]
; [ 1 1

0 1 ]
[
a b
c d

]
=
[
a+c b+d
c d

]
.

Setting upper left corners equal, we have a = a + c, so c = 0. This also makes the
lower right corners equal. From the upper right, we get a+ b = b+ d, which means
a = d. So the centralizer is all matrices of the form [ a 0

0 a ]; that is, diagonal matrices.
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3.2.23 Let G be a cyclic group, and let a, b be elements s.t. neither a = x2

nor b = x2 has a solution in G. Show that ab = x2 does have a solution in G.

We know that G is cyclic, so let’s suppose G = 〈g〉. Then a and b are powers of g, so
say a = gα and b = gβ . We know that the exponents α and β are odd, because for
instance if a = g2k, then x = gk would be a solution to x2 = a. But then ab = gα+β

has an even exponent, which means that x = g(α+β)/2 is a solution to x2 = ab.

3.2.26 For a, b ∈ G, assume that o(a) and o(b) are relatively prime and that
ab = ba. Show that o(ab) = o(a)o(b).

Let k = o(a) and m = o(b). We saw above that o(ab) ≤ o(a)o(b), just because the
commutativity ensures that (ab)km = e. What remains to show is that o(ab) ≥
o(a)o(b); that is, if (ab)` = e, we must show that ` ≥ km.
So, begin with (ab)` = e for some positive `, which means that a`b` = e by com-
mutativity. Thus a` = b−`. Since these things are equal, they of course have the
same order, and since the order of an element is equal to the order of its inverse, it
follows that o(a`) = o(b`).
However, recall that for any g, we have that o(g) = |〈g〉| and that 〈g〉 = {gn : n ∈ Z}.
Clearly the powers of a` are a subset of the powers of a, so 〈a`〉 is a subgroup of 〈a〉,
and by Lagrange’s theorem (the order of a subgroup divides the order of the group),
this means that o(a`) divides o(a) and likewise o(b`) divides o(b). But o(a`) = o(b`),
so if the same integer divides both k and m, which are relatively prime, we conclude
that o(a`) = o(b`) = 1. That means a` = b` = e. But then ` is a multiple of k and
a multiple of m, and since they are relatively prime, it is thus a multiple of km. We
have successfully proved that ` ≥ km.

3.3.4 Find the cyclic subgroup generated by [ 2 1
0 2 ] in GL2(Z3).

Let M = [ 2 1
0 2 ]. Then M2 = [ 2 1

0 2 ] [ 2 1
0 2 ] = [ 1 1

0 1 ], and M3 = [ 2 1
0 2 ] [ 1 1

0 1 ] = [ 2 0
0 2 ].

We note that M3 is −I, so we can see that M6 = I.
That means that M4 = −M = [ 1 2

0 1 ], and M5 = −M2 = [ 2 2
0 2 ].

So 〈M〉 = {I,M,M2,M3,M4,M5}, where the matrix values are listed above.

3.3.6 Construct an abelian group of order 12 that is not cyclic.

The easiest answer is G = Z6×Z2. Elements of Z6 have order 1, 2, 3, 6 and elements
of Z2 have order 1,2. By Proposition 3.3.4, the order of an element of G is the lcm
of the orders of the individual elements of the factor groups, so the largest possible
order in G is 6. Since |G| = 12 but it has no element of order 12, it is not cyclic.
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3.3.9 Consider subsets of Z × Z. Let C1 be the “diagonal subset” consisting
of pairs (a, a). For n ≥ 2, let Cn be the subset consisting of pairs (a, b) for which
a ≡ b (mod n). Show that each of these is a subgroup, and show that any PROPER
subgroup of Z× Z which contains C1 has the form Cn for some integer n.

One way to say what it means to be in Cn is that the two coordinates must differ
by a multiple of n. Now suppose H is some subgroup of Z×Z containing C1. Then
let n be the smallest difference between a and b for any (a, b) ∈ H. I claim that if
n ≥ 2, then H = Cn for this value n; if n = 1, then H = Z× Z itself; and finally it
is clear that if there is never any difference between the coordinates, then H = C1.
Consider the case n = 1. Then there is some (a, a+ 1) ∈ H, so by closure we have
(a, a+ 1)− (a, a) = (0, 1) ∈ H, and thus all its powers, which means (0,m) ∈ H for
all m ∈ Z. But then for any (a, b) ∈ Z× Z, we have (a, b) = (a, a) + (0, b− a) ∈ H,
showing that H = Z× Z.
Now suppose n > 1. Then there is some (a, a + n) ∈ H, which means (0, n) ∈ H,
but we don’t have (0, 1), · · · , (0, n − 1) or n would not be the smallest difference
of coordinates. Since (0, n) ∈ H, we have (0, kn) ∈ H for all k ∈ Z, and therefore
(a, a+ kn) ∈ H for all a ∈ Z, k ∈ Z. This is all of Cn, so we’ve shown that Cn ⊆ H.
We’re trying to show Cn = H, so suppose not; then there is some (a, b) in H which
is not in Cn. Thus n 6 | b−a, and so b−a = kn+r for some remainder 0 < r < n−1.
But we have

(a, b)− (a, a)− (0, kn) = (a, a+ kn+ r)− (a, a)− (0, kn) = (0, r) ∈ H,
and this contradicts the minimality of n. This shows that H = Cn, as needed.

3.3.10 Consider the subset X of Sn × Sn consisting of pairs (σ, τ) for which
σ(1) = τ(1). Show X is not a subgroup.

In fact, this subset neither has inverses nor is closed under multiplication. Let’s
see that with an example. Consider σ = (123) and τ = (124), both elements of
S4. Let g = (σ, τ). This is an element of X because σ(1) = τ(1) = 2. However,
g2 = (σ2, τ2) =

(
(132), (142)

)
, and this is not in X because 1 is mapped to 3 by

the first coordinate permutation and to 4 by the second. (In fact, in this example,
g−1 = g2, so this shows the failure of inverses and closure at the same time.)

EC: 3.2.2 Let A =
[

1 −1
−1 0

]
∈ GL2(R). Show that A has infinite order by

proving that An =
[
Fn+1 −Fn

−Fn Fn−1

]
.

This problem isn’t hard but it uses proof by induction; that’s why it’s extra credit!
Recall that the Fibonacci sequence starts out F0 = 0, F1 = 1, F2 = 1, F3 = 2, and
continues by the recursive rule Fn+1 = Fn + Fn−1.
Base case (n = 1): A1 =

[
F2 −F1

−F1 F0

]
X

Inductive hypothesis: Assume An−1 =
[

Fn −Fn−1

−Fn−1 Fn−2

]
.

Inductive step: Consider An. It is equal to

A ·An−1 =
[

1 −1
−1 0

]
·
[

Fn −Fn−1

−Fn−1 Fn−2

]
=
[
Fn+Fn−1 −(Fn−1+Fn−2)

−Fn Fn−1

]
=
[
Fn+1 −Fn

−Fn Fn−1

]
X

Since the Fn are increasing, no power of A can ever equal I.


