CHAPTER 3 SELECTED SOLUTIONS Math 145, Abstract Algebra, Duchin

3.1.2 For each binary operation *, does the set with * define a group?

(a),(c),(e) are in the back of the book, so I'll just do the others. Note: I will often use the letter e for the identity element.

(b) $[a * b = \max\{a, b\} \text{ on } \mathbb{Z}]$ This is not a group because there is no identity. There's no integer e such that $\max\{a, e\} = a$ for all a. To see this, suppose there were such an integer e, and let a = e - 1. Then

 $a * e = \max\{a, e\} = \max\{e - 1, e\} = e \neq a.$

(d) $[a*b = |ab| \text{ on } \mathbb{Z}]$ Again, there is clearly no identity, which would be an integer e such that |ae| = a for all a. To see this, note that |ae| is always nonnegative, so can't equal a if a < 0.

(f) [a * b = ab on $\mathbb{Q}]$ So close and yet so far! This can't be a group because 0 has no inverse (there's nothing to multiply by 0 to get back to 1, which is clearly the multiplicative identity). However, this is the only obstruction: if you removed 0, then it would form a group.

3.1.9 Let $G = \{x \in \mathbb{R} : x > 0, x \neq 1\}$. Define $a * b = a^{\ln b}$. Prove it's an abelian group.

We need to show that this is a binary operation, so we check that the output is real: yes. Next, we need associativity, identity, and inverses. Associativity: $a * (b * c) = a^{\ln(b*c)} = a^{\ln(c^{\ln c})} = a^{\ln c \cdot \ln b}$. On the other hand,

 $(a * b) * c) = (a^{\ln b}) * c = (a^{\ln b})^{\ln c} = a^{\ln b \cdot \ln c}$ by laws of exponents. These are equal. Identity: this is kind of convenient, because we often write e for the identity, and here the identity is the actual number e = 2.71828... Check: $e * a = e^{\ln a} = a$ and $a * e = a^{\ln e} = a^1 = a$ by laws of exponents.

Inverses: given a, we need to solve $a^{\ln b} = e$ for b. Taking $\ln of$ both sides, I get $\ln b \cdot \ln a = 1$, so $\ln b = 1/\ln a$, so $b = e^{1/\ln a}$. (And we note that this b is a positive real not equal to 1.) So we've found a b for which a * b = e. Now let's check that for this same value, b * a = e. We have: $b * a = (e^{1/\ln a})^{\ln a} = e^1 = e$.

Abelian: why does $a^{\ln b} = b^{\ln a}$? Because if you take the ln of either side, you get $\ln a \cdot \ln b$. If two numbers have the same result when you take their natural log, they are equal (ln is injective).

3.1.11 Show that the set of all 2×2 real matrices of the form $\begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix}$ with $m \neq 0$ forms a group under matrix multiplication.

Well, since these matrices have determinant m which is not 0, the set of all of them is a subset of $GL_2(\mathbb{R})$, so we get associativity for free since we know that $GL_2(\mathbb{R})$ is a group. Closure: $\begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} n & c \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} mn & mc+b \\ 0 & 1 \end{bmatrix} \checkmark$ (note: $mn \neq 0$ since $m, n \neq 0$.) Identity: $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is the multiplicative identity for 2×2 matrices, and it's in there. \checkmark Inverses: $\begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1/m & -b/m \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, this is of the right form (note: $1/m \neq 0$), and we already know that inverses are unique in $GL_2(\mathbb{R})$. \checkmark **3.1.12** In the group from the last exercise, find all elements that commute with $\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$.

Well, $\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2m & 2b \\ 0 & 1 \end{bmatrix}$ while $\begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2m & b \\ 0 & 1 \end{bmatrix}$, so these are equal iff b = 2b, i.e., b = 0. Thus the set of such matrices is those of the form $\begin{bmatrix} m & 0 \\ 0 & 1 \end{bmatrix}$.

3.1.13 Let $S = \mathbb{R} \setminus \{-1\}$. Define a * b = a + b + ab. Show that (S, *) is a group.

To see that it's a binary operation, we just have to check that $a + b + ab \neq -1$ whenever $a, b \neq -1$. We have

 $a + b + ab = -1 \iff a(1 + b) = -1 - b = -1(1 + b) \iff (1 + a)(1 + b) = 0.$

The only solutions to this are a = -1 or b = -1.

Associativity: On one hand, a * (b * c) = a * (b + c + bc) = a + b + c + bc + ab + ac + abc. On the other hand, (a * b) * c = (a + b + ab) * c = a + b + ab + c + ac + bc + abc. These are equal.

Identity: e = 0. We have a * e = a + 0 + 0 = a; e * a = 0 + a + 0 = a. Inverses: Given a, we must solve a + b + ab = 0 for b. We have

$$b(1+a) = -a \implies b = \frac{-a}{1+a}$$

(Note: for this to equal -1, we would have to have a/(1 + a) = 1, or a = 1 + a, which is impossible.) We have found a solution for a * b = 0, and it only remains to check b * a = 0 for this b. But the operation is clearly commutative because addition and multiplication of reals are commutative, so we are done.

3.1.16 Show that a nonabelian group must have at least five distinct elements.

First let us prove a simple lemma.

Lemma: If a and b are not the identity, then their product ab can't equal a or b. Proof: If ab = a, then cancellation gives b = e. Likewise $ab = b \implies a = e$. This makes things pretty easy. There's nothing to check for a one-element group. For a two element group $\{e, a\}$, there's also nothing to check, because ea = ae by definition of identity anyway. How about a three-element group $\{e, a, b\}$? Well, here we must have ab = e by the lemma, and for the same reason ba = e, so the group is abelian. Finally, we consider a four-element group $\{e, a, b, c\}$. We know that e commutes with everything, and of course everything commutes with itself, so we only need to show that gh = hg for all choices of g, h as distinct nonidentity letters. Without

loss of generality, it suffices to show ab = ba. But there are only two possibilities, ab = e or ab = c. Suppose ab = e. Then $b = a^{-1}$, so ba = e, and they commute. The last case is ab = c. But then we also have ba = e or c. If ba = e, then they are inverses, contradicting ab = c. So ba = c = ab, and we've shown that they commute.

3.1.17 Let G be a group. For $a, b \in G$, prove that $(ab)^n = a^n b^n$ for all $n \in \mathbb{Z}$ iff ab = ba.

Backward direction: suppose ab = ba. Then for n > 0, we can take any expression $(ab)^n = (ab)(ab) \cdots (ab)$ and swap the *a* letters to the left past each of the *b* letters, obtaining $a^n b^n$. For n = 0 there is nothing to prove, since e = e. For n < 0, we must show that $(ab)^{-m} = a^{-m}b^{-m}$ where m = -n > 0. But the meaning of raising something to the -m power is raising its inverse to the *m* power, so the left-hand side becomes $(b^{-1}a^{-1})^m$ and the right-hand side becomes $(a^{-1})^m(b^{-1})^m$. We can now just swap them past each other once we check that they commute. But we know that ab = ba. Taking the inverse of both sides gives us $b^{-1}a^{-1} = a^{-1}b^{-1}$, so the inverses commute and we are done.

Forward direction: if the identity is true for all n, then in particular it's true for n = 2. So we can assume that $(ab)^2 = a^2b^2$, or in other words abab = aabb. Canceling an a on the left and a b on the right, we get ba = ab, as desired.

3.2.5 Find all cyclic subgroups of... (b) \mathbb{Z}_8 ; (d) S_4

For \mathbb{Z}_8 : We have $\langle 0 \rangle = \{0\}$. For anything relatively prime to 8, it generates the full group, so we have $\langle 1 \rangle = \langle 3 \rangle = \langle 5 \rangle = \langle 7 \rangle = \mathbb{Z}_8$. We know that *a* generates the same subgroup as a^{-1} in general, so we have $\langle 2 \rangle = \langle 6 \rangle = \{0, 2, 4, 6\}$. And finally $\langle 4 \rangle = \{0, 4\}$. We've found four distinct cyclic subgroups in all. For S_4 : there are 4! = 24 elements. There is 1 identity, there are 6 transpositions,

there are 8 3-cycles, 6 4-cycles, and three remaining elements like (12)(34) that are products of two disjoint transpositions. Of course we have the trivial subgroup $\langle e \rangle = \{e\}$. And clearly each transposition, such as (12), generates its own twoelement cyclic subgroup, such as $\langle (12) \rangle = \{e, (12)\}$. So there are six of these. Now the ones generated by 3-cycles can be generated two ways, such as $\langle (123) \rangle =$ $\langle (132) \rangle = \{e, (123), (132)\}$, so there are four of these, since there are 8 3-cycles. The four-cycles also double up: $\langle (1234) \rangle = \langle (1432) \rangle = \{e, (1234), (13)(24), (1432)\}$. Note that, importantly, even though (13)(24) appears in this subgroup, it does not generate it! So there are 3 distinct cyclic subgroups generated by 4-cycles. Finally, the double transpositions like (13)(24) have order two, so they generate subgroups of the form $\langle (13)(24) \rangle = \{e, (13)(24)\}$, and there are three of them. So in all, we have classified the cyclic subgroups into 1 + 6 + 4 + 3 + 3 = 17 different ones, out of a possible 24.

3.2.9 Show that $H := \left\{ \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} \right\}$ is a subgroup of $GL_3(\mathbb{R})$.

In fact, this H is a famous group called the **Heisenberg group**. As we learned in Prop 3.2.2, we need only check for closure, identity, and inverses to check H is a subgroup. Clearly the identity is in H (letting a = b = c = 0). Closure:

 $\begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & a+x & b+y+az \\ 0 & 1 & c+z \\ 0 & 0 & 1 \end{bmatrix} \checkmark$ Inverses: $\begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -a & ac-b \\ 0 & 1 & -c \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \checkmark$ (We already know that in $GL_3(\mathbb{R})$, a right-hand inverse is also a left-hand inverse.) **3.2.11** For fixed $a \in S$, show $\{\sigma \in Sym(S) : \sigma(a) = a\}$ is a subgroup.

4

Again, we check closure, identity, and inverses for the collection of permutations of S that fix our element a.

If σ, τ both fix a, then $\sigma\tau(a) = \sigma(a) = a$, so $\sigma\tau$ fixes a as well, which shows closure. The identity map fixes every element, so in particular it fixes a.

Finally, if σ fixes a, consider σ^{-1} . This must exist because Sym(S) is a group. But $\sigma(a) = a \implies \sigma^{-1}(a) = a$, so the inverse fixes a as well.

Note: a permutation of S fixing a is in obvious correspondence with a permutation of $S \setminus \{a\}$: to specify such a map, you only need to know what it does to all the other elements! So since $Sym(S \setminus \{a\})$ is a group, this is another way to approach this question.

3.2.14 If G is abelian, show that the set of finite-order elements forms a subgroup.

Let $F = \{a \in G : o(a) < \infty\}$ be the set of finite-order elements. The identity has order 1, so it's in F. Any element has the same order as its inverse, so $a \in F \implies$ $o(a) < \infty \implies o(a^{-1}) < \infty \implies a^{-1} \in F$. Finally, let's check closure. Suppose $a, b \in F$ and suppose o(a) = k and o(b) = m. Then $(ab)^{km} = a^{km}b^{km}$ by commutativity, and this equals $(a^k)^m (b^m)^k = e^m e^k = e$. This means that $o(ab) \le km < \infty$, so $ab \in F$. And we're done!

3.2.18 Let $G = (\mathbb{Q}, +)$ and suppose H, K are subgroups of G. Prove that if $H, K \neq \{0\}$, then $H \cap K \neq \{0\}$.

Well, by hypothesis, each of H and K contains some nonzero rational number. And since H, K contain inverses, if they contain any number they contain its negative as well, so each contains some positive rational number. So we can consider some $a/b \in H$ and $p/q \in K$, where a, b, p, q are positive integers, without loss of generality. By closure under addition, the sum of a/b with itself any number of times is also in H, so add it to itself b times, concluding that $a \in H$. Likewise $p \in K$. But then add a to itself p times to find that $pa \in H$, and add p to itself a times to find that $pa \in K$. So both groups contain the nonzero integer pa.

3.2.20 Compute the centralizer in $GL_2(\mathbb{R})$ of the matrix $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.

Recall that the *centralizer* of g is the set of all elements commuting with g. Let's take a matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$; we'll suppose this commutes with $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and see what this tells us about A.

 $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} a & a+b \\ c & c+d \end{bmatrix} ; \qquad \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a+c & b+d \\ c & d \end{bmatrix}.$

Setting upper left corners equal, we have a = a + c, so c = 0. This also makes the lower right corners equal. From the upper right, we get a + b = b + d, which means a = d. So the centralizer is all matrices of the form $\begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$; that is, diagonal matrices.

3.2.23 Let G be a cyclic group, and let a, b be elements s.t. neither $a = x^2$ nor $b = x^2$ has a solution in G. Show that $ab = x^2$ does have a solution in G.

We know that G is cyclic, so let's suppose $G = \langle g \rangle$. Then a and b are powers of g, so say $a = g^{\alpha}$ and $b = g^{\beta}$. We know that the exponents α and β are odd, because for instance if $a = g^{2k}$, then $x = g^k$ would be a solution to $x^2 = a$. But then $ab = g^{\alpha+\beta}$ has an even exponent, which means that $x = g^{(\alpha+\beta)/2}$ is a solution to $x^2 = ab$.

3.2.26 For $a, b \in G$, assume that o(a) and o(b) are relatively prime and that ab = ba. Show that o(ab) = o(a)o(b).

Let k = o(a) and m = o(b). We saw above that $o(ab) \leq o(a)o(b)$, just because the commutativity ensures that $(ab)^{km} = e$. What remains to show is that $o(ab) \geq o(a)o(b)$; that is, if $(ab)^{\ell} = e$, we must show that $\ell \geq km$.

So, begin with $(ab)^{\ell} = e$ for some positive ℓ , which means that $a^{\ell}b^{\ell} = e$ by commutativity. Thus $a^{\ell} = b^{-\ell}$. Since these things are equal, they of course have the same order, and since the order of an element is equal to the order of its inverse, it follows that $o(a^{\ell}) = o(b^{\ell})$.

However, recall that for any g, we have that $o(g) = |\langle g \rangle|$ and that $\langle g \rangle = \{g^n : n \in \mathbb{Z}\}$. Clearly the powers of a^{ℓ} are a subset of the powers of a, so $\langle a^{\ell} \rangle$ is a subgroup of $\langle a \rangle$, and by Lagrange's theorem (the order of a subgroup divides the order of the group), this means that $o(a^{\ell})$ divides o(a) and likewise $o(b^{\ell})$ divides o(b). But $o(a^{\ell}) = o(b^{\ell})$, so if the same integer divides both k and m, which are relatively prime, we conclude that $o(a^{\ell}) = o(b^{\ell}) = 1$. That means $a^{\ell} = b^{\ell} = e$. But then ℓ is a multiple of k and a multiple of m, and since they are relatively prime, it is thus a multiple of km. We have successfully proved that $\ell \geq km$.

3.3.4 Find the cyclic subgroup generated by $\begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$ in $GL_2(\mathbb{Z}_3)$.

Let $M = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$. Then $M^2 = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, and $M^3 = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$. We note that M^3 is -I, so we can see that $M^6 = I$. That means that $M^4 = -M = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$, and $M^5 = -M^2 = \begin{bmatrix} 2 & 2 \\ 0 & 2 \end{bmatrix}$. So $\langle M \rangle = \{I, M, M^2, M^3, M^4, M^5\}$, where the matrix values are listed above.

3.3.6 Construct an abelian group of order 12 that is not cyclic.

The easiest answer is $G = \mathbb{Z}_6 \times \mathbb{Z}_2$. Elements of \mathbb{Z}_6 have order 1, 2, 3, 6 and elements of \mathbb{Z}^2 have order 1, 2. By Proposition 3.3.4, the order of an element of G is the lcm of the orders of the individual elements of the factor groups, so the largest possible order in G is 6. Since |G| = 12 but it has no element of order 12, it is not cyclic.

3.3.9 Consider subsets of $\mathbb{Z} \times \mathbb{Z}$. Let C_1 be the "diagonal subset" consisting of pairs (a, a). For $n \ge 2$, let C_n be the subset consisting of pairs (a, b) for which $a \equiv b \pmod{n}$. Show that each of these is a subgroup, and show that any PROPER subgroup of $\mathbb{Z} \times \mathbb{Z}$ which contains C_1 has the form C_n for some integer n.

One way to say what it means to be in C_n is that the two coordinates must differ by a multiple of n. Now suppose H is some subgroup of $\mathbb{Z} \times \mathbb{Z}$ containing C_1 . Then let n be the smallest difference between a and b for any $(a, b) \in H$. I claim that if $n \geq 2$, then $H = C_n$ for this value n; if n = 1, then $H = \mathbb{Z} \times \mathbb{Z}$ itself; and finally it is clear that if there is never any difference between the coordinates, then $H = C_1$. Consider the case n = 1. Then there is some $(a, a + 1) \in H$, so by closure we have $(a, a + 1) - (a, a) = (0, 1) \in H$, and thus all its powers, which means $(0, m) \in H$ for all $m \in \mathbb{Z}$. But then for any $(a, b) \in \mathbb{Z} \times \mathbb{Z}$, we have $(a, b) = (a, a) + (0, b - a) \in H$, showing that $H = \mathbb{Z} \times \mathbb{Z}$.

Now suppose n > 1. Then there is some $(a, a + n) \in H$, which means $(0, n) \in H$, but we don't have $(0, 1), \dots, (0, n - 1)$ or n would not be the smallest difference of coordinates. Since $(0, n) \in H$, we have $(0, kn) \in H$ for all $k \in \mathbb{Z}$, and therefore $(a, a + kn) \in H$ for all $a \in \mathbb{Z}, k \in \mathbb{Z}$. This is all of C_n , so we've shown that $C_n \subseteq H$. We're trying to show $C_n = H$, so suppose not; then there is some (a, b) in H which is not in C_n . Thus $n \not\mid b-a$, and so b-a = kn+r for some remainder 0 < r < n-1. But we have

$$(a,b) - (a,a) - (0,kn) = (a,a+kn+r) - (a,a) - (0,kn) = (0,r) \in H,$$

and this contradicts the minimality of n. This shows that $H = C_n$, as needed.

3.3.10 Consider the subset X of $S_n \times S_n$ consisting of pairs (σ, τ) for which $\sigma(1) = \tau(1)$. Show X is not a subgroup.

In fact, this subset neither has inverses nor is closed under multiplication. Let's see that with an example. Consider $\sigma = (123)$ and $\tau = (124)$, both elements of S_4 . Let $g = (\sigma, \tau)$. This is an element of X because $\sigma(1) = \tau(1) = 2$. However, $g^2 = (\sigma^2, \tau^2) = ((132), (142))$, and this is not in X because 1 is mapped to 3 by the first coordinate permutation and to 4 by the second. (In fact, in this example, $g^{-1} = g^2$, so this shows the failure of inverses and closure at the same time.)

EC: 3.2.2 Let $A = \begin{bmatrix} 1 & -1 \\ -1 & 0 \end{bmatrix} \in GL_2(\mathbb{R})$. Show that A has infinite order by proving that $A^n = \begin{bmatrix} F_{n+1} & -F_n \\ -F_n & F_{n-1} \end{bmatrix}$.

This problem isn't hard but it uses proof by induction; that's why it's extra credit! Recall that the Fibonacci sequence starts out $F_0 = 0, F_1 = 1, F_2 = 1, F_3 = 2$, and continues by the recursive rule $F_{n+1} = F_n + F_{n-1}$. Base case (n = 1): $A^1 = \begin{bmatrix} F_2 & -F_1 \\ -F_1 & F_0 \end{bmatrix} \checkmark$ Inductive hypothesis: Assume $A^{n-1} = \begin{bmatrix} F_n & -F_{n-1} \\ -F_{n-1} & F_{n-2} \end{bmatrix}$. Inductive step: Consider A^n . It is equal to $A \cdot A^{n-1} = \begin{bmatrix} 1 & -1 \\ -I & 0 \end{bmatrix} \cdot \begin{bmatrix} F_n & -F_{n-1} \\ -F_{n-1} & F_{n-2} \end{bmatrix} = \begin{bmatrix} F_{n+1} - F_{n-1} \\ -F_n & F_{n-1} \end{bmatrix} = \begin{bmatrix} F_{n+1} & -F_n \\ -F_n & F_{n-1} \end{bmatrix} \checkmark$ Since the F_n are increasing, no power of A can ever equal I.