

Alg Oct 1 - homom and isomorphism

Score:	
50010.	

1.	For a	homomorphism	from G->H, is the	kernel always a	subgroup
----	-------	--------------	-------------------	-----------------	----------

- (A) Yes, because the homomorphism property implies that it is a closed subset of G, with inverses.
- (B) Yes, because all generators of G are in it.
- (c) No, because it depends on the rank of H.
- (D) No, because isomorphisms have no kernel.

2. Can an infinite group be isomorphic to a finite group?

- (A) Yes, but only if both are abelian.
- (B) No, because isomorphisms must be bijections.
- (c) Yes, because what matters is that they have the same composition law.
- D No, because there is no homomorphism from an infinite group to a finite group.

3. Which of the following groups is cyclic? Choose all that apply.

- \bigcirc The integers **Z**.
- \bigcirc The finite group \mathbf{Z}_{10} .
- \bigcirc The lattice \mathbf{Z}^2 .
- D The symmetries of a regular pentagon.