Throughout this exam, the symbol **Z** represents the set of all *integers*. If $n \in \mathbb{Z}_{>0}$, then \mathbb{Z}_n denotes the set of congruence classes of integers mod n, and \mathbb{Z}_n^{\times} denotes the set of *units* of \mathbb{Z}_n .

The point values add up to 80. This is an 80-minute exam, so the point values double as time recommendations (e.g, 8 minutes on an 8-point problem).

You must justify/show work for all answers.

1. (4 points) Give careful statements of the following:

(a) the fundamental theorem of arithmetic.

(b) the definition of an associative binary operation on a set 6.

2. (12 points) Decide whether each of the following assertions is *True or False*. Briefly justify your conclusion.

(a) Let $n \in \mathbb{Z}$ with n > 1. If $n \in \mathbb{Z}$ and $2n \equiv 0 \pmod{2n}$, then $n \equiv 1 \pmod{n}$.

- (b) The groups \mathbb{Z}_8^{\times} and \mathbb{Z}_4 are isomorphic.
- (c) The set *X* of *all* functions $f : \{1, 2, 3\} \rightarrow \{1, 2, 3\}$ is a group with operation given by composition of functions.

3. (8 points) If *x* is a real number, write $\lfloor x \rfloor$ for the *greatest integer* $n \in \mathbb{Z}$ with the property that $n \leq x$. Consider the function $f : \mathbb{R}^2 \to \mathbb{Z}^2$ given by the rule that f maps $\begin{pmatrix} x \\ y \end{pmatrix}$ to $\begin{pmatrix} \lfloor x \rfloor \\ \lfloor y \rfloor \end{pmatrix}$. Then f determines an equivalence relation via $\begin{pmatrix} x \\ y \end{pmatrix} \sim \begin{pmatrix} u \\ v \end{pmatrix} \iff f\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = f\left(\begin{pmatrix} u \\ v \end{pmatrix}\right)$.

- (a) Give three distinct elements of **R**² that are in the equivalence class $\left[\begin{pmatrix} 13/3\\\sqrt{10} \end{pmatrix}\right]$.
- (b) Describe geometrically how \sim partitions the domain **R**² into equivalence classes.

4. (8 points) Let *G* be a finite group and suppose it has elements $a, b \in G$ with o(a) = 10 and o(b) = 15. Let $O(G) = \{m : o(g) = m \text{ for some } g \in G\}$ be the set of all numbers that are orders of elements of *G*.

- (a) Find a subgroup of *G* having order 3, and show that $3 \in O(G)$.
- (b) For each of the following numbers n, decide whether or not O(G) **must** contain n. Be sure to indicate your reasoning.

$$n = 7$$
, $n = 5$, and $n = 25$.

5. (12 points)

- (a) If *p* is a prime number bigger than *n*, show that S_n has no element of order *p*.
- (b) Decide whether or not *S*⁷ has an element of order 12. Either give an example, or give a proof that no such element exists.
- (c) Give an example of an infinite set *S* and an element σ of the group Sym(*S*) such that $o(\sigma) = 3$.

EXAM CONTINUES ON REVERSE.

6. (18 points) Consider the permutation

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 1 & 6 & 5 & 4 \end{pmatrix} \in S_6$$

- (a) Write σ as a product of disjoint cycles.
- (b) Write σ as a product of transpositions.
- (c) What is the parity of σ ? (That is, even or odd?)
- (d) What is the order $o(\sigma)$?
- (e) Suppose that the vertices of a regular hexagon are labeled in counterclockwise order with the numbers 1 through 6. Then the dihedral group D_6 of symmetries of the hexagon can be identified with a subgroup of S_6 . Is $\sigma \in D_6$?
- 7. (18 points) Let us abbreviate 0 = [0] and 1 = [1] in \mathbb{Z}_5 . Let $G = GL_2(\mathbb{Z}_5)$.
- (a) Let $H = \left\{ \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} : x, y \in \mathbb{Z}_5^{\times} \right\}$. Show that *H* is a *subgroup* of *G* and find its order.
- (b) Let $K = \left\langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right\rangle$. Write out all the elements of *K* and show that $K \cong \mathbf{Z}_m$ for some *m*.
- (c) If $A \in H$, carefully check that $A \cdot \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \cdot A^{-1} \in K$.

END OF EXAM

EXTRA CREDIT:

- (a) Write $d = u \cdot 27 + v \cdot 100$ for $u, v \in \mathbb{Z}$, where $d = \gcd(27, 100)$.
- (b) Find $[27]^{-1}$ in the group $\mathbf{Z}_{100}^{\times}$.
- (c) Find all incongruent solutions to the equation $100x = 2 \pmod{27}$.