The grading of this quiz will focus on clear argumentation.

(a) Clearly prove that $b \mid a$, $b \mid (a+c) \implies c \in b\mathbb{Z}$.

Proof. The definition of $b\mathbb{Z}$ is the set of all integer multiples of b, so $x \in b\mathbb{Z} \iff b \mid x \iff x = bk$ for some $k \in \mathbb{Z}$. So I will assume $b \mid a$ and $b \mid (a + c)$ and I must prove that $b \mid c$. From these assumptions, we know that a = bm and a + c = bn for some $m, n \in \mathbb{Z}$. But then

$$c = (a + c) - a = bn - bm = b(n - m),$$

and n - m is in \mathbb{Z} because it is the difference of two integers, so we have verified $b \mid c$.

(b) If a = 120 and b = 4, does $b \mid a$? Does $2b \mid a$?

Proof. Again, the meaning of $r \mid s$ is that s = rk for some $k \in \mathbb{Z}$. But $120 = 4 \cdot 30$ and $120 = 8 \cdot 15 = (2 \cdot 4) \cdot 15$, so the statements are verified.

(c) Show that $b \mid a \implies 2b \mid a$. Clearly explain the logic of your answer.

Proof. I must show that $b \mid a \implies 2b \mid a$; in other words, I must show that $b \mid a \implies 2b \mid a$ is FALSE. The meaning of an implication $P \implies Q$ is that every time P is upheld, Q is also upheld. To show that this is false I need only supply one case in which P is true but Q is false. So I just need to give one example of numbers a and b such that $b \mid a$ but $2b \not \mid a$. For example, if a = 2 and b = 10, I have $2 \mid 10$ while $4 \not \mid 10$.

Quiz 1