
Chapter 4 Selected Solutions Math 145, Abstract Algebra, Duchin

4.2.5 and 4.2.7 Find the gcd of the given polynomials, over the given field.
Write the gcd as a linear combination of the given polynomials.

(b) f(x) = x3 − 2x2 + 3x+ 1 and and g(x) = x3 + 2x+ 1 over Z5.
(d) f(x) = x5 + x4 + 2x2 + 4x+ 4 and g(x) = x3 + x2 + 4x over Z5.

(b) The Euclidean algorithm gives me (3x2 + 2x+ 2)f + (2x+ 4x+ 4)g = 1, so the
gcd is 1.
(d) Here, I get (4x+ 4)f + (x3 + x2 + x+ 2)g = 1, so the gcd is again 1.

4.2.9 Let a ∈ R, and let f(x) ∈ R[x], with derivative f ′(x). Show that the
remainder when f(x) is divided by (x− a)2 is f ′(a)(x− a) + f(a).

The division/remainder theorem tells us that there are unique q and r such that
f(x) = (x−a)2q(x)+r(x), where deg r < 2. That means we can write r(x) = Ax+B
and it only remains to solve for the coefficients A and B. We’ll do that by computing
f(a) and f ′(a).
Plugging in to the above equation, we have f(a) = r(a), and we know r(a) = Aa+B,
so putting these together gives Aa + B = f(a). Taking a derivative of f gives
f ′(x) = 2(x − a)q(x) + (x − a)2q′(x) + r′(x), so we have f ′(a) = r′(a), and r′(x)
is the constant function A, so putting these together gives f ′(a) = A. But then
solving for B we have B = f(a)− Aa = f(a)− af ′(a), so finally r(x) = Ax+B =
f ′(a)x+ f(a)− af ′(a) = f ′(a)(x− a) + f(a), as desired.

4.2.13 Find all monic irreducible polynomials of degree ≤ 3 over Z3. Us-
ing your list, write each of the following polynomials as a product of irreducible
polynomials.

The point of this problem was just to get you practice manipulat-
ing/factoring/unfactoring polynomials. An example of a method to do this is to
list all the monic linear polynomials for yourself: x, x+ 1, x+ 2. Then form all nine
products of these with each other to find the reducible quadratics. (The others are
irreducible.) Then find all products of quadratics with linears to get all reducible
cubics. I won’t reproduce this process here.
List of quadratic irreducibles: x2+1, x2+x+2, x2+2x+2. List of cubic irreducibles:
x3 + 2x+ 1, x3 + 2x+ 2, x3 + x2 + 2, x3 + x2 + x+ 2, x3 + x2 + 2x+ 1, x3 + 2x2 +
1, x3 + 2x2 + x+ 1, x3 + 2x2 + 2x+ 2.
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Here are the factorizations...
(a) x2 − 2x+ 1 = (x− 1)2 = (x+ 2)2.
(b) x4 + 2x2 + 2x+ 2. First look for a root (there are only 3 to try). We can check
that 2 is a root, so x− 2 factors out. Long division gives the quotient x3 + 2x2 + 2,
which is (x2 + x+ 2)(x+ 1). Final answer (x2 + x+ 2)(x+ 1)2.
(c) 2x3 − 2x+ 1 = 2(x3 + 2x+ 2).
(d) x4 + 1 doesn’t have a root, so if it factors, it factors into quadratics. We try
products of the irreducible quadratics and find (x2 + 2x+ 2)(x2 + x+ 2).
(e) x9 − x = x(x8 − 1) = x(x4 + 1)(x2 + 1)(x+ 1)(x+ 2) and then finish it off with
the factorization of x4 + 1 from above.

4.2.15 Show that for any real number a 6= 0, the polynomial xn − a has no
multiple roots in R.

There are many ways to do this! Let’s use the problem we did above, 4.2.9, to say
that the remainder when f(x) is divided by (x − b)2 is f ′(b)(x − b) + f(b). We’ll
show that this remainder is NOT zero for our function f(x) = xn− a, which means
that b is NOT a root of multiplicity two or more.
For our function, f(b) = bn − a, and f ′(x) = nxn−1, so f ′(b) = nbn−1. That means
the remainder is nbn−1(x− b) + bn− a. Sorting this to look more like a polynomial,
we have remainder (nbn−1)x + (nbn + bn − a), and we need to show that this is
not the zero function. The only way for the coefficient of x to be zero is if b = 0.
However if b = 0, the linear term of this remainder function is −a, which we are
told is not zero. So we are done.

4.2.20 Find a polynomial q(x) such that (b) (a + bx)q(x) ≡ 1 (mod x2 − 2)
over Q; (d) (x2 + 2x+ 1)q(x) ≡ 1 (mod x3 + x2 + 1) over Z3.

(b) Putting f(x) = bx + a and g(x) = x2 − 2, we can find the linear combination

of these that gives 1. The Euclidean algorithm gives ( b
ax− 1)f + (−b

2

a )g = 2b2−a2

a ,

and dividing out to get one, we find that the coefficient of f is q(x) = bx−a
2b2−a2 . Now

something a bit more interesting: let’s check that this works. When you multiply

f(x)q(x), you get b2x2−a2

2b2−a2 , and since we’re working mod x2−2, we know that x2 ≡ 2,
so this simplifies to one!

(d) The Euclidean algorithm will tell you that x2 + 2x + 1 is its own inverse in
Z3[x]

/
〈x3 + x2 + 1〉.



3

4.2.10 Let p(x) = anx
n + an−1x

n−1 + · · ·+ a0 be a polynomial with rational
coefficients such that an and a0 are nonzero. Show that p(x) is irreducible over Q
iff its “reversal” q(x) = a0x

n + a1x
n−1 + · · ·+ an is.

First, the hypothesis that an and a0 are nonzero means that both p and q have
degree exactly n. Note that xn ·q(1/x) = p(x) (as you can check by just writing out
the terms). Now suppose that q is reducible, so that it factors as q(x) = a(x)b(x)
where deg(a) = k ≥ 1 and deg(b) = n − k. Then q(1/x) = a(1/x)b(1/x). Now
if a has degree k, then xk · a(1/x) is a polynomial (i.e., has no x terms in the
denominator). So we have p(x) = xn · q(1/x) = (xk · a(1/x))(xn−k · b(1/x)), and
this is a factorization of p into two polynomials. So we’ve seen that if q is reducible
then p is reducible. But we can run the exact same argument in the other direction
by writing q(x) = xn · p(1/x), and that completes the proof.

4.3.6 Let F be a field, let p(x) ∈ F [x] be an irreducible polynomial, and let
E = {[a] ∈ F [x]/〈p(x)〉 : a ∈ F}. Show that E is a subfield of F [x]/〈p〉. Then show
that φ : F → E defined by φ(a) = [a] for all a ∈ F is a field isomorphism.

What are the elements of F [x]/〈p〉? They are equivalence classes of polynomials
whose lowest-degree representatives are precisely the polynomials in F [x] of degree
strictly less than deg p. Now we can regard a ∈ F [x] as either zero or a polynomial
of degree zero (a nonzero constant). So since p is irreducible, its degree is at least
one, and therefore these are all valid, distinct elements of the quotient ring F [x]/〈p〉.
So E is a subset of that ring, and it is identified with F by the natural map φ. But
in fact it’s a subfield, because its elements are in bijective correspondence with the
elements of the field F and multiplication and addition are well-defined in the usual
way (see Prop 4.3.4).

4.3.8 Prove that R[x]/〈x2 + 2〉 is isomorphic to C.

We build the map by hand. Let E = R[x]/〈x2 + 2〉. Its elements are precisely the
(equivalence classes of) linear polynomials: E = {ax + b : a, b ∈ R}. To describe
φ : E → C, we only need to say where real numbers are sent by φ and where
the special element x is sent; then if we extend this as a field homomorphism, we
will know where all elements ax + b are sent. A natural choice is to fix all real
elements: φ(a) = a for all a ∈ R. Then we want to send x to some root of the

same polynomial. Now in C the roots of x2 + 2 are ±
√

2 · i. I can choose either one
as the image of x, so I will choose φ(x) =

√
2 · i. Then φ is completely defined by

this: φ(ax+ b) = a
√

2i+ b. This is a homomorphism by construction and is clearly
injective; to see that it is surjective, note that c+ di, an arbitrary element of C, is
φ
(
(d/
√

2)x+ c
)
.
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4.3.9 Prove that R[x]/〈x2 + x+ 1〉 is isomorphic to C.

This is essentially identical to the last problem! We similarly define the isomorphism
to fix real numbers and to send x to (either of) the roots of the polynomial. The

quadratic formula tells us that the solutions are −1±
√
1−4

2 = − 1
2 ±

√
3
2 i. Let us

abbreviate τ := − 1
2 +

√
3
2 i and choose φ(x) = τ , so that φ(ax + b) = aτ + b =

(
√
3
2 a)i+ (b− a

2 ). Clearly this runs over all of C and distinct values of (a, b) map to
distinct complex numbers; it is once again a homomorphism by construction.

4.3.14 Show that the polynomial x2 − 3 has a root in Q(
√

3) but not Q(
√

2).
Explain why this implies that those fields are not isomorphic.

As we have seen many times (e.g., page 180 in the book), as a set Q(
√

2) = {a+b
√

2 :

a, b ∈ Q}. So to show that the field has no root of x2−3, we show that (a+b
√

2)2−
3 = 0 has no solutions for a, b ∈ Q. Simplifying, we have (a2+2b2−3)+(2ab)

√
2 = 0.

Now we know that c + d
√

2 = 0 is only possible if c = d = 0 (because it simplifies

to
√

2 = −d/c, which is impossible, unless c = 0 and that forces d = 0 as well). So
2ab = 0 and a2 + 2b2 − 3 = 0. The first equation implies that a = 0 or b = 0. If
b = 0, we deduce that a2 = 3, which is impossible for rational a. But if a = 0, we
have 2b2 = 3, which is impossible for rational b. (We are using the fact that

√
3 and√

3/2 are irrational, which we proved earlier in the semester.) So we have shown

that x2 − 3 has no root in Q(
√

2).

Why does this mean there’s no isomorphism of fields φ : Q(
√

3) → Q(
√

2)? Well,
suppose there were such an isomorphism. Now we know that there is an element
a ∈ Q(

√
3) that satisifies x2 − 3 = 0 (namely a =

√
3). Thus we can plug in and

we have a2 − 3 = 0. Now apply φ to both sides. φ(0) = 0 because an additive
homomorphism must fix the additive identity. As a multiplicative homomorphism,
φ(1) = 1, and thus φ(3) = 3. Using the homomorphism property repeatedly we
find φ(a2 − 3) = φ(a2)− φ(3) = [φ(a)]2 − 3 = 0, so a root of that equation must be
mapped by φ to a root of the same equation! But the target field has no such root,
so our map has nowhere valid to send a =

√
3. Thus no such isomorphism exists.
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4.3.15 Prove that the field of all matrices over Q of the form
[

a b
2b a

]
is isomor-

phic to Q(
√

2).

Let M stand for this collection of matrices and we will build a map φ : Q(
√

2) →
M that is a field isomorphism. It must send the multiplicative identity to the
multiplicative identity, so φ(1) = I = [ 1 0

0 1 ]. But then for an integer p, we have

φ(p) = pI =
[ p 0
0 p

]
. Likewise φ(q) =

[ q 0
0 q

]
, so φ(1/q) =

[ q 0
0 q

]−1
=
[
1/q 0
0 1/q

]
,

and therefore φ(p/q) =
[
p/q 0
0 p/q

]
. So we know where all rational numbers are

mapped, and only need to decide on an image for
√

2 and then extend by the
homomorphism property. To find a suitable image, we note that

√
2 satisfies x2 = 2,

so we need a solution to A2 = 2I in M . If A =
[

a b
2b a

]
, we square it to obtain

A2 =
[
a2+2b2 2ab
4ab a2+2b2

]
, which is of the right form to be in M . When does this equal

2I? Only when a = 0, b = 1. So the solution is A = [ 0 1
2 0 ], and we complete the

definition of φ by sending
√

2 to this A. Then for an arbitrary element we have
φ(c+d

√
2) =

[
c d
2d c

]
, which clearly puts M in bijective correspondence with Q)(

√
2)

and is once again a homomorphism by construction.

4.3.21 (bdf) Find multiplicative inverses for: (b) [a + bx] in Q[x]/〈x2 − 2〉;
(d) [x2 − 2x+ 1] in Z3[x]/〈x3 + x2 + 2x+ 1〉; (f) [x+ 4] in Z5[x]/〈x3 + x+ 1〉.

(b) We did this in the last assignment! (Problem 4.2.20, just phrased a bit differently
but the exact same question.) Answer: bx−a

2b2−a2 .

(d) Euclidean algorithm gives (x2 + 1)f + (2x)g = 1, so the inverse of f mod g is
x2 + 1.

(f) Euclidean algorithm gives (3x2 + 3x + 1)f + 2g = 1, so the inverse of f mod g
is 3x2 + 3x+ 1.

4.2.24 (EC) Let F be a finite field. Show that F [x] has irreducible polynomials
of arbitrarily high degree.

Suppose, for the sake of contradiction, that there is some highest degree D of an
irreducible polynomial over F . We are supposing the field is finite; say F = n.
Then there are at most nD+1 polynomials of degree ≤ D, because these are all
possible ways to fill in the coefficients of aDx

D + · · · + a0, including zeros. Thus,
the hypothesis that D is the largest degree ensures that there are only finitely many
irreducible polynomials in all, and we may enumerate them f1, f2, . . . , fN . Now we
mimic the proof (attributed to Euclid) of the infinitude of primes. Define a new
polynomial by F (x) = (f1(x) · · · fN (x)) + 1. The degree of F is greater than D
because it is the sum of the degrees of the fi, and that means it is not on the list of
all irreducible polynomials, so it must be reducible. But we can see that no fi is a
factor of F , because dividing F by any fi gives remainder 1. But every polynomial
factors into a product of irreducible polynomials, so this is a contradiction.


