The point values add up to 106. This is an 120-minute exam, so the point values double as time recommendations (e.g, 8 minutes on an 8-point problem).

You must justify/show work for all answers.

- 1. (8 points)
- (a) What is an *ideal*? Carefully state a theorem involving ideals.
- (b) What does kernel mean? Carefully state a theorem involving kernels.
- 2. (20 points) True or False?
- (a) If f(x), $g(x) \in \mathbb{Q}[x]$ and $x \cdot f(x) + (x^2 + x) \cdot g(x) = \frac{1}{3}x$, then the gcd of f(x) and g(x) is 1.
- (b) The set $D = \{\frac{a}{2^k} : k \in \mathbb{Z}_{\geq 0}\}$ (called the *dyadic rationals*, in case you're curious) is a subfield of \mathbb{Q} .
- (c) There are at least two irreducible polynomials in $\mathbb{Z}_2[x]$ of degree three.
- (d) There are at least five irreducible polynomials in $\mathbb{R}[x]$ of degree three.
- (e) $\mathbb{Q}(i)$ is isomorphic to \mathbb{C} as a field. (Here, i represents a root of the polynomial $x^2 + 1$.)
- 3. (14 points) Prove that

$$N \subseteq G$$
, G/N abelian \implies G abelian.

You can use the example of $A_n \leq S_n$ if you check all the relevant properties.

- **4**. (12 points) Let $G = \mathbb{Z}^2 = \mathbb{Z} \times \mathbb{Z}$, and consider the subgroup $H = \{(6b, 12b) : b \in \mathbb{Z}\} \leq G$.
- (a) Is *H* a cyclic group?
- (b) Describe the elements of G/H and give two examples of distinct elements.
- (c) Is G/H a group? (And if so, under what operation?)
- (d) For what integers $a \in \mathbb{Z}$ are the cosets (0, a) + H and (-18, 1) + H equal?
- (e) If $\alpha = (1,0) + H$ and $\beta = (-2,-4) + H$, what are their additive orders?

- **5**. (8 points) Let A, B, and C be multiplicative groups, let $f: A \to B$ and $g: A \to C$ be group homomorphisms such that $\ker f \cap \ker g = \{1\}$. Let $F: A \to B \times C$ be defined by F(a) = (f(a), g(a)).
- (a) Show that $\ker F = \{1\}.$
- (b) Find a subgroup of $B \times C$ that is isomorphic to A.
- **6**. (12 points) As usual, let $\langle r \rangle$ denote the ideal generated by an element r in a ring R.
- (a) What is $\langle 5 \rangle$ in \mathbb{Z} ?
- (b) What is $\langle 5 \rangle$ in \mathbb{C} ?
- (c) List two quadratic polynomials contained in $\langle x 1 \rangle$ in $\mathbb{Z}[x]$.
- (d) If I give you a complicated polynomial in $\mathbb{Z}[x]$, give a *simple* way to decide whether it is in that ideal. Example: $f(x) = 129x^7 12x^4 + 35x 200$.
- 7. (16 points) Let $p(x) = x^3 + 5$ and let $E := \mathbb{Q}[x]/\langle p(x) \rangle$.
- (a) Carefully explain how you know that E is a field, describing what major results you are quoting.
- (b) Writing u for the equivalence class of x in E (i.e., $u = [x] = x + \langle p(x) \rangle$), explain why every element of E can be written in a unique way in the form $au^2 + bu + c$ for $a, b, c \in \mathbb{Q}$.
- (c) Reduce the element $(1 + u^2)^2 \in E$ into that form.
- (d) Do the same for the element $\frac{1}{1+u} \in E$.
- 8. (16 points) Let $q(x) = x^4 + 9x^2 + 12 \in \mathbb{Z}_{29}[x]$, and let $R = \mathbb{Z}_{29}[x]/\langle x^2 \rangle$.
- (a) Explain steps that would suffice to determine whether q(x) is irreducible in $\mathbb{Z}_{29}[x]$.
- (b) Compute $d(x) = \gcd(x^2, q(x))$ and express it in the form $d(x) = u(x)x^2 + v(x)q(x)$ for $u(x), v(x) \in \mathbb{Z}_{29}[x]$.
- (c) Does (the equivalence class of) q(x) have a multiplicative inverse in R?
- (d) Find zero divisors in R; that is, find nonzero elements whose product is zero. Is R a field?

END OF EXAM

EXTRA CREDIT: For a group G, let Z(G) denote its *center*: the set of all elements that commute with everything in G. Let the dihedral group D_4 be generated by two elements, a rotation a and a flip b, as usual. Prove first that $Z(D_4) = \{e, a^2\}$, and then that $D_4/Z(D_4) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.