The point values add up to 106. This is an 120-minute exam, so the point values double as time recommendations (e.g, 8 minutes on an 8-point problem).

You must justify/show work for all answers.

1. (8 points)

(a) What is an *ideal*? Carefully state a theorem involving ideals.

- (b) What does *kernel* mean? Carefully state a theorem involving kernels.
- **2**. (20 points) *True or False?*
- (a) If $f(x)$, $g(x) \in \mathbb{Q}[x]$ and $x \cdot f(x) + (x^2 + x) \cdot g(x) = \frac{1}{3}x$, then the gcd of $f(x)$ and $g(x)$ is 1.
- (b) The set $D = \begin{cases} \frac{a}{2l} \end{cases}$ $\frac{u}{2^k}$: $k \in \mathbb{Z}_{\geq 0}$ } (called the *dyadic rationals*, in case you're curious) is a subfield of Q.
- (c) There are at least two irreducible polynomials in $\mathbb{Z}_2[x]$ of degree three.
- (d) There are at least five irreducible polynomials in $\mathbb{R}[x]$ of degree three.
- (e) $\mathbb{Q}(i)$ is isomorphic to \mathbb{C} as a field. (Here, *i* represents a root of the polynomial $x^2 + 1$.)

3. (14 points) Prove that

N ⊴ *G*, *G*/*N* abelian \Rightarrow *G* abelian.

You can use the example of $A_n \leq S_n$ if you check all the relevant properties.

- **4**. (12 points) Let $G = \mathbb{Z}^2 = \mathbb{Z} \times \mathbb{Z}$, and consider the subgroup $H = \{(6b, 12b) : b \in \mathbb{Z}\} \leq G$.
- (a) Is *H* a cyclic group?
- (b) Describe the elements of *G*/*H* and give two examples of distinct elements.
- (c) Is *G*/*H* a group? (And if so, under what operation?)
- (d) For what integers $a \in \mathbb{Z}$ are the cosets $(0, a) + H$ and $(-18, 1) + H$ equal?
- (e) If $\alpha = (1, 0) + H$ and $\beta = (-2, -4) + H$, what are their additive orders?

EXAM CONTINUES ON REVERSE.

5. (8 points) Let *A*, *B*, and *C* be multiplicative groups, let $f : A \rightarrow B$ and $g : A \rightarrow C$ be group homomorphisms such that ker *f* ∩ ker *g* = {1}. Let *F* : *A* → *B* × *C* be defined by *F*(*a*) = (*f*(*a*), *g*(*a*)).

- (a) Show that ker $F = \{1\}$.
- (b) Find a subgroup of $B \times C$ that is isomorphic to A.
- **6.** (12 points) As usual, let $\langle r \rangle$ denote the ideal generated by an element *r* in a ring *R*.
- (a) What is $\langle 5 \rangle$ in \mathbb{Z} ?
- (b) What is $\langle 5 \rangle$ in **C**?
- (c) List two quadratic polynomials contained in $\langle x 1 \rangle$ in $\mathbb{Z}[x]$.
- (d) If I give you a complicated polynomial in $\mathbb{Z}[x]$, give a *simple* way to decide whether it is in that ideal. Example: $f(x) = 129x^7 - 12x^4 + 35x - 200$.
- **7.** (16 points) Let $p(x) = x^3 + 5$ and let $E := \mathbb{Q}[x]/\langle p(x) \rangle$.
- (a) Carefully explain how you know that *E* is a field, describing what major results you are quoting.
- (b) Writing *u* for the equivalence class of *x* in *E* (i.e., $u = [x] = x + \langle p(x) \rangle$), explain why every element of *E* can be written in a unique way in the form $au^2 + bu + c$ for $a, b, c \in \mathbb{Q}$.
- (c) Reduce the element $(1 + u^2)^2 \in E$ into that form.
- (d) Do the same for the element $\frac{1}{1+u} \in E$.
- **8**. (16 points) Let $q(x) = x^4 + 9x^2 + 12 \in \mathbb{Z}_{29}[x]$, and let $R = \mathbb{Z}_{29}[x]/\langle x^2 \rangle$.
- (a) Explain steps that would suffice to determine whether $q(x)$ is irreducible in $\mathbb{Z}_{29}[x]$.
- (b) Compute $d(x) = \gcd(x^2, q(x))$ and express it in the form $d(x) = u(x)x^2 + v(x)q(x)$ for $u(x), v(x) \in$ $\mathbb{Z}_{29}[x]$.
- (c) Does (the equivalence class of) $q(x)$ have a multiplicative inverse in *R*?
- (d) Find zero divisors in *R*; that is, find nonzero elements whose product is zero. Is *R* a field?

END OF EXAM

EXTRA CREDIT: For a group *G*, let *Z*(*G*) denote its *center*: the set of all elements that commute with everything in *G*. Let the dihedral group *D*⁴ be generated by two elements, a rotation *a* and a flip *b*, as usual. Prove first that $Z(D_4) = \{e, a^2\}$, and then that $D_4/Z(D_4) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.