(1) Using the definition of $F[x]$ as all polynomials in x with coefficients in F, explain why $\mathbb{Q}[\sqrt{3}] = \{a + b\sqrt{3} : a, b \in \mathbb{Q}\}.$

Any monomial of the form a_k $(\sqrt{3})^k$ where $a \in \mathbb{Q}$ can be rewritten: Any monomial of the form $a_k(\sqrt{3})^k$ where $a \in \mathbb{Q}$ can be rewritten:
if $k = 2m$ is even, then $(\sqrt{3})^k = 3^m$ is rational, and if $k = 2m + 1$
is odd, then $(\sqrt{3})^k = 3^m\sqrt{3}$. So either $a_k(\sqrt{3})^k$ is rational, or it's 3. So either a_k ($(\sqrt{3})^k$ is rational, or it's is odd, then $(\sqrt{3})^{\alpha} = 3^{\alpha} \sqrt{3}$. So either $a_k(\sqrt{3})^{\alpha}$ is rational, or it s
rational times $\sqrt{3}$. That means that every polynomial in $\sqrt{3}$ can be reduced to $a + b\sqrt{3}$ by combining terms.

(2) Using the definition of $F(x)$ as the smallest field containing F and x, explain why $\mathbb{Q}(\sqrt{3}) = \mathbb{Q}[\sqrt{3}].$

I just need to show that $\mathbb{Q}[\sqrt{2}]$ 3] is already a field, so it does not have to be expanded any more. To do that, I need to show that every element is invertible. We have

$$
\frac{1}{a+b\sqrt{3}} = \frac{a-b\sqrt{3}}{a^2 - 3b^2} = \frac{a}{a^2 - 3b^2} + \frac{-b}{a^2 - 3b^2}\sqrt{3},
$$

which means that this ring is already a field. (Note that the denominator of this expression has no solutions in rationals, so the expression is well-defined.)

(3) How many polynomials of degree three are there in $\mathbb{Z}_2[x]$? How many of them are monic?

The coefficients are all either 0 or 1, so the polynomials are of the form $x^3 + a_2x^2 + a_1x + a_0$. So there are three coefficients that can be 0 or 1, which means $2 \cdot 2 \cdot 2 = 8$ choices. All of these polynomials are monic.