MATH 145-02: WORKSHEET

This worksheet, which is your last problem set of the semester, covers the two post-midterm 2 topics: (A-B) all groups are quotients of free groups, and (C-D) free groups are "paradoxical."

Problem A Let G be the quotient $F_{2} /\langle b\rangle$. (a) What is a simplified form of $a b^{8} a^{5} b^{10}$? (b) What is a normal form for the elements of G ? (In other words, what is a full set of representatives for the cosets?) (c) What familiar group is G isomorphic to?

Problem B Let G be the quotient $F_{2} /\left\langle a^{4}, b^{4}, a b a^{-1} b^{-1}\right\rangle$. In other words, this quotient is formed by the equivalence relations $a^{4} \equiv e, b^{4} \equiv e, a b \equiv b a$. Now answer (a),(b),(c) just like in the last question!

Problem C Recall that the word length in $G=\langle S \mid R\rangle$ is defined by letting $|g|_{S}$ equal the shortest "spelling" of g in letters from the alphabet S. The corresponding distance function is $d(g, h)=\left|g^{-1} h\right|_{S}$.
(a) Consider the group $G=\mathbb{Z}^{2}$ generated by $S=\left\{\left[\begin{array}{c} \pm 2 \\ \pm 1\end{array}\right],\left[\begin{array}{c} \pm 1 \\ \pm 2\end{array}\right]\right\}$. In other words, the generators are the "moves" that can be made by a chess knight. For this generating set, what is $\left|\left[\begin{array}{l}1 \\ 0\end{array}\right]\right|_{S}$? (Prove it.)
(b) Consider the group $G=\mathbb{Z}^{2}$ generated by $S=\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$. How many group elements g have $|g|_{S} \leq n$? (Work your way up to this with $n=2,3,4$.) Sketch a picture that shows the words of length $\leq n$ in the Cayley graph.

Problem D Show that left-multiplication by any group element is a rigid motion by showing that $d(g, h)=$ $d(j g, j h)$ for any $j \in G$. (This is needed to show that the group F_{2} rigidly covers itself two times over!)

