Project 3: Simple Web-Based To-Do List and Calendar
View Application Using Python

EE129 - Computer Communication Networks
Aliyah Weiss
Mon & Wed 4:30-5:45 pm
December 18th 2024
Tufts University, ECE School of Engineering

Introduction

The goal of this project is to use Python to create a project of our choosing. I decided to
build a web-based to-do list application that integrated user accounts, task management, and a
dynamic calendar view, similar to the known Google Calendar. This project requires the use of a
broad range of topics from computer communication networks, web development, and software
design. The project utilizes Python and the Flask framework, which allows the use of a language
and ecosystem known to be reliable, readable, and clear. Users can create an account, manage
personalized tasks, and visualize their schedules on a dynamic calendar using HTTP requests that
showcase the server-client model and the flow of data on the web. The project also utilizes
SQLAIlchemy and SQLite for data persistence, Bootstrap for a polished interface, and
FullCalendar for the dynamic client-side interactivity. The project combines theories with
practice, allowing a functional, user-friendly application to use HTTP and database queries.
Sessions secure user data and the logical routes serve dynamic content, while providing a simple
UI to allow users to navigate easily. Understanding how to build, secure, and present these
web-based tools is a great foundation for more advanced networking applications.

Experimental Setup

To begin, I launched Visual Studio Code to create a project folder on my local computer.
In my case, I have already downloaded Python3. A student replicating this project should ensure
this version is downloaded. On a Mac with Homebrew, use “brew install python”.
Then run “python3 —-version” or “python —-version” in the terminal to confirm a
Python 3.X installation is being used. Once this has been confirmed and VSCode is open, I
opened my new folder named todo app to hold all of the project files. Inside this folder, I
used a virtual environment by running “python3 -m venv venv” and activated it with
“source venv/bin/activate” on Mac. This ensures that all dependencies used in the
project such as Flask and Flask-SQLAIchemy are installed in the correct location in this isolated
environment. Then [used “pip install flask flask sglalchemy werkzeug” to
get the necessary packages. Since the project uses user authentication, a few additional libraries
were also installed. These are noted in the “requirements.txt” file and can be
downloaded as such.

After preparing the environment, | created the essential files: “app.py” for the Flask
application logic, “models.py” for database models (User and Task), “templates/” for
HTML templates, and “static/” for images. [added a “base.html” file to templates as
a template layout, plus “index.html, add task.html, view task.html,
edit task.html, and calendar.html” for functionality. I also added an image ofa
cat and an image of flowers to the “static/images” directory to use later on for
decoration.

Before coding the main functionality, I tested that the Flask server could run. By typing
“python app.py” inthe terminal, I confirmed that the program ran on
http://127.0.0.1:5000"”. Iopened this URL in Chrome and it allowed me to see the
initial setup and confirm the environment and file structure worked. I then began implementing
the required features. First, I added a user signup and login functionality, which required setting
up the database with “db.create all () ” in the Flask app context and ensuring the User

and Task models were all properly defined in “models.py” . To test this, I registered my
own user “leebee” with the password “meow”, and verified that I could login and add
unique tasks.

Next, I integrated the dynamic calendar by adding FullCalendar through a CDN link in
“calendar.html”. Itested this by creating tasks with future due dates and then accessing
the calendar page to confirm the tasks appeared on the correct calendar dates. This same process
applied to verifying styling enhancements when I added pastel colors, Bootstrap components,
and a flower banner image. [would also refresh the page to ensure the design changes stayed on
a refreshed version.

Results

After implementing the functionality discussed above. The URL performed the desired
tasks as follows:

C © 127.0.01 4 s H @ 127.0.01

Username:[] Username:
passwordt | password |

Figure 1&2: User is greeted with a Login page where they can enter pre-existing credentials or
create a new account

http://127.0.0.1:5000

c ® 127.0.0.1 5 ¥ Finish update

Tasks Calendar Log Out

Add a New Task
Tite:[|

Description: ;/

Due Date (YYYY-MM-DD):[|
Cancel

Figure 3: The user can then add a task, allowing for a title, description, and due date to be
personalized for each task added

@ 127.0.01 & K < Finish update © 127.0.01 o W # Finish update
= W
Add New Taski
asks Calendar Log Out
testing 123

Due: 2024-12-09
Completed View Details
test 456

Due: 2024-12-10

View Details

study for visi

Due: 2024-12-10

View Details

this shouldnt be last!

Add New Task| Due: 2024-12-12

View Details
testing 123 ewbe

lets see
Due: 2024-12-09

Completed View Details Due: 2024-12-16

View Details
test 456 .

Figure 4&5: Once logged in, the homepage of the website appears as follows, showcasing tasks
that have been added in due-date order, as well as their status if completed

€ ¢ O 127.001 A4 % H <« G O 127.0.01

X
-~ 2
v v b ! 2l <
L -
- L@ # >
3§ " O
. 4 N | "
HFREL Y - osing 25— Jowaviorvs |
tast456
osingizs——Jouayorvi |

Al

Figure 6&7: Using the Navigation bar, a user can navigate to the Calendar to view their tasks on
a monthly calendar

The above images display the functionality of the website, recognizing the user input and
adjusting the output behavior on the application based on this input. HTTP is able to GET, POST,
PUT, and DELETE successfully. As well as utilize the database and included dependencies to
run a calendar, and utilize user accounts to remember each user’s tasks.

Discussion

During this project, the final application was able to successfully demonstrate the
networking principles and design considerations that were outlined above. I integrated user
accounts, personal task management, and a dynamic calendar to show how HTTP and data
persistence work together to create a responsive, user-focused program. However, during this
process I faced a few issues. One issue was the serialization of Task objects to JSON. I had
problems with the syntax when passing these objects, and received error messages saying
“Object of type Task is not JSON serializable”. I decided to convert them to dictionaries before
rendering to solve this issue. This emphasized the importance of understanding data formats and
serialization. Similarly, I had issues with the calendar appearing on the page using FullCalendar.
This gave me an error that said “FullCalendar is not defined”. I realized I was using an outdated
URL link for FullCalendar, and I ended up finding the correct one on their website giving
instructions on how to utilize the script.

Lastly, I had challenges with my environment setup. I had originally attempted to create
the program without a virtual environment, however I had issues getting the correct libraries in
the correct directories. I had faced errors trying to install Flask-SWLAIchemy when attempting
to run the program this way. The fastest solution was to switch to the use of the virtual
environment to install everything in a more organized and isolated manner. After resolving these
issues, [understood a bit more about the foundations of networking principles and the
importance of attention to detail when building these real-world applications.

Conclusion

This project illustrates how a Python-based web application can integrate user
authentication, data persistence, and a dynamic interface to enhance user experience. By building
a to-do list system with personalized tasks, a calendar view, and secure user logins, I was able to
demonstrate the interplay of network protocols, database management, and front end design. The
outcome was a fully functioning application that not only could handle HTTP communication
and data storage, but also had a visually appealing and user friendly interface. The key takeaway
is a deeper understanding of how all of these components work together to build a stable, secure,
and intuitive web application that utilizes concepts that drive our modern Internet services today.

Appendix

redirect, url for

werkzeug.security generate password hash, check password hash

flask abort

Elask

init app

app_context

create

login required (
wrapped view (
g.user None:
redirect (url for (
()
wrapped view. name

wrapped view

@app.route ()
@login required
index () :
tasks Task.query.filter by (g.user.id) .order by (Task.due date).all (

render template (tasks)

@app.route (

@login required

add task () :

ession.add (new task)
ssion.commit ()

redirect (url for (

render template (

@Qapp.route (
@login required
view task() :
Task.query.filter by(
None:
abort (404)

render template (

@app.route (
@login required
mark complete ()t
task Task.query.filter by (
task:
ask.completed True
db.session.commit ()

redirect (url for (

@Qapp.route (
@login required

delete task() :

task Task.query.filter by (

session.delete (task)

sion.commit ()

r.id) .first ()

redirect (url for (

@app.route (
@login required
edit task() :
Iask.query.filter by (

request.form.get (
est.form.get (

.form.get (

lue date due

ssion.commit ()

redirect (url for (

render template (

@Qapp.route (

@login required

calendar view() :

Task.query.filter by (

render template (

@Qapp.route (

signup () :

orm.get (

User.query.filter by (username) .first () :

, 400

generate password hash (pas
user User (username,
ession.add (new user)
session.commit ()

redirect (url for (

render template (

@app.route (

login () :

User.query.filter by (username) .first ()

check password hash (user.passworc

T

redirect (url for (

render template (

@app.route (
logout () :
session.clear ()

redirect (url for (

@app.before request
load logged in user():
session.get (
None:

None

User.query.get (user

models.py

flask sglalchem
datetime import datetime

SQLAlchemny ()

User (db.Model

relationship

Task (db.Model

Add task.html

class
action method

class

required class

Base.html

html

lang

charset

integrity

crossorigin

#£££7£9

#ffccel

.navbar-brand

#f££

required

#££85b3;

:hover, :focus

#££85b3;

#££85b3;
#£££;

.btn-pink:hover

#££f9ccl;

.banner

.banner::after

(255,255,255,0.3);

.container {

integrity

crossorigin

Calendar.html

JSON.parse (
wyTasks .map (
itle,

.due date,

.id

ument.getElementById (

FullCalendar.Calendar (calendarEl,

ent.preventDefault () ;

cation.href

dar.render () ;

class

action

for

type

required class

type
href

Index.html

login.html

class

action method

required

required

Signup.html

class

action method

required

required

View task.html

