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Healthy adults have robust individual differences in neuroanatomy and cognitive ability not captured by demo-
graphics or grossmorphology (Luders, Narr, Thompson, & Toga, 2009).Weused a hierarchical independent com-
ponent analysis (hICA) to create novel characterizations of individual differences in our participants (N= 190).
These components fused data across multiple cognitive tests and neuroanatomical variables. The first level
contained four independent, underlying sources of phenotypic variance that predominately modeled broad
relationships within types of data (e.g., “white matter,” or “subcortical gray matter”), but were not reflective of
traditional individual difference measures such as sex, age, or intracranial volume. After accounting for the
novel individual difference measures, a second level analysis identified two underlying sources of phenotypic
variation. One of these made strong, joint contributions to both the anatomical structures associated with the
core fronto-parietal “rich club” network (van denHeuvel & Sporns, 2011), and to cognitive factors. These findings
suggest that a hierarchical, data-driven approach is able to identify underlying sources of individual difference
that contribute to cognitive-anatomical variation in healthy young adults.

Published by Elsevier Inc.
Introduction

Every brain is unique. These differences in brain structure and phys-
iology contribute to the stunning diversity of human thought and iden-
tity. Magnetic resonance imaging (MRI) scanning and post-processing
techniques provide a newwindow on individual differences, character-
izing volume, cortical thickness, and white-matter integrity. Further,
these techniques categorize themassively multivariate rawMRI images
into a set of robust and meaningful summary variables tied to brain
health or function rather than performance on a specific task.

Extensive literature focuses on the complex network of interactions
between sex, age, cognitive factors, brain size and shape, gray matter,
education, fitness, and a host of other variables (Gray et al., 2003;
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Rypma and Prabhakaran, 2009; Goh et al., 2011). One way to approach
this complex series of interactions is as a source separation problem: the
manymanifest variables are a phenotype produced bymixing of smaller
number of underlying sources of variation. Identifying the underlying
sources could help discover and differentiate anatomical brain pheno-
types. Building amodel of these sourceswould allowus to better control
for individual variation and to identify how brain measures cluster at
multiple levels of specificity.

However, finding joint contributions to anatomical and cognitive
variables in MRI image sets has been challenging, especially in healthy
young adults (Haier et al., 2004; Luders et al., 2009; McDaniel, 2005;
Wickett et al., 2000). Such relationships are often limited to broadmor-
phological effects such as a correlation between brain size and fluid in-
telligence (gf; McDaniel, 2005), or are characterized more in special
populations with greater individual brain variation such as in older
adults (Goh et al., 2011).

Yet lesion studies robustly link cognitive factors to anatomy (Allen et
al., 2006; Barbey et al., 2012; Barbey et al., 2014), as do functional and
resting state imaging (Buckner et al., 2008; Von den Heuvel and
Sporns, 2011; Wang et al., 2013). Specific anatomical hypotheses
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developed from such data, the parieto-frontal integration theory (PFIT),
maps high-level cognitive factors such as fluid intelligence to a network
of superior parietal and frontal regions that integratemultiple sources of
information in service of a goal (Jung andHaier, 2007). A parallel frame-
workmaps these functions to a highly functionally interconnected “rich
club” of fronto-parietal regions (Van den Heuvel and Sporns, 2011).
Why aren't these sources readily apparent as variation in individual an-
atomical data?

There are converging reasons that joint sources of cognitive and an-
atomical variation could be difficult to identify. Anatomical scans lack
the robust time-series data of functional scans, and thus cognitive-
anatomical relationships require larger sample sizes to assess effects.
Additionally, the hypothesized fluid intelligence network is distributed
across multiple anatomical regions and tissue types (e.g., gray vs.
white matter) best assessed by different imaging methods (e.g., T1
weighted scans v. diffusion tensor imaging). Thus, the common varia-
tion associated with these functional networks is likely distributed
throughout multiple regions and imaging modalities and might not
pass statistical thresholds in any single region, let alone across all re-
gions of the entire network. Finally, there might be different relation-
ships between anatomy and cognitive factors at different levels of
analysis: with strong, low-level sources of anatomical variability ob-
scuring more subtle signals tying cognitive functions to anatomical
networks.

In the current paper, we employ a hierarchical independent compo-
nent analysis (hICA) to fuse 124measures of phenotypic variance across
cognitive, neuroanatomical, and demographic values assessed in 190
healthy adults. Similar approaches have been used before to fuse func-
tional data (Groves et al., 2011; Laird et al., 2011; Smith et al., 2009;
Sui et al., 2011, 2012). We compare variation across four types of MRI-
assessed individual difference measures (cortical and subcortical
volumes, cortical thickness, white-matter integrity), and a battery
of demographic, fitness, and cognitive measures. This first-level
ICA serves to identify sources of phenotypic variation that make
joint contributions to multiple cognitive factors and multiple re-
gions and types of brain anatomy. We then regress these first-level
components from our data and perform ICA on the residual correla-
tions in our data, to produce second-level components that describe
additional sources of cognitive-anatomical variation, but were not
well captured in the first-level analysis.

By examining the anatomical maps of these independent sources of
variation, and exploring their relationships with specific cognitive fac-
tors, we hope to better characterize underlying sources of variation
that jointly contribute to anatomical and cognitive variations across
multiple levels. As a test-case, we also examine how these high-level
factors relate to PFIT “rich club” network hypothesized to be related to
general intelligence including higher cognitive functions such as fluid
intelligence (Colom et al., 2009; Jung and Haier, 2007).
Table 1
Demographics.

Imaging sample (N = 190) Full sample (N = 518)

% Female 45% 50%
Mean age (std) 24.3 (6.6) 24.3 (6.0)
Mean education (std) 3.5 (0.9) 3.5 (0.8)
Methods

Sample

Participants were recruited from East-Central Illinois for the
INSIGHT (“An integrative system for enhancing fluid intelligence
through human cognitive activity, fitness, brain stimulation, and nutri-
tional intervention”) study. All participants received a battery of 12 cog-
nitive tests and a fitness assessment. Half of these individuals received
an additional battery of anatomical and functional MRI scans. Excluding
individuals with incomplete data, our total sample is 518 individuals
(239 females, mean age: 24.3 years) with cognitive and fitness assess-
ments, of whom 190 had complete imaging data (i.e., we excluded
any individual missing any of the measures assessed by our analysis).
The independent component analyses presented here include only
this imaging sub-set of the total sample.
To confirm that this sample was representative of the larger dataset
from which the factor scores were computed we performed a one-
way ANOVA (imaging group v. full sample) and found no significant
between-group differences on age, sex, education or any of the four cog-
nitive factors (d.f. = 2515, all F values between 0 and 2.1, all p N .12).

Demographics

The 190 participants consisted of 85 females, and 105males. The age
range in our sample was 18–44 years, with a median of 22 years, and a
mean of 24.3 years. The mean educational level of the participants was
“some college” (i.e., median score 3, mean score 3.6) as reported on
a scale from 1 to 5, where 1 denoted “less than a high school diploma”,
2 denoted “high school diploma or equivalent”, 3 denoted “some col-
lege”, 4 denoted “college degree”, and 5 denoted “post-graduate educa-
tion.” (See Table 1)

Aerobic fitness assessment

Cardiovascular fitness has previously been shown to have important
contributions to neural health and cognitive function (Kramer et al.,
2001, 2005). Maximal oxygen consumption (VO2max) was measured
using a computerized indirect calorimetry system (ParvoMedics True
Max 2400) and a modified Balke protocol (American College of Sports
Medicine. ACSM's Guidelines for Exercise Testing and Prescription,
2014) with averages for oxygen uptake (VO2) and respiratory exchange
ratio (RER) assessed every 20 s. Participants ran on a motor-driven
treadmill at a constant speed, with 2.0% increases in grade every
2 min until volitional exhaustion. The raw value was adjusted for body
size, age, and gender to produce a VO2max percentile score.

Cognitive tests and factor scores

Participants received a battery of 12, standardized cognitive tests
designed to estimate underlying latent variables corresponding to cog-
nitive constructs (see Table 2). The four latent variables of interest were
fluid intelligence (gf), working memory (wm), executive function (ef),
and episodic memory (em).

Procedures for these tests are described in detail in the associated ci-
tations. Brief descriptions are as follows: The BOMAT is an untimed,
thirty-item matrix-reasoning test. Number series involves generating
the next element in a string of numbers related by a common function.
In letter sets, participants pick which of five sets of four letters differs
from the others. Reading, rotation, and symmetry span are all complex
span tasks, involving holding items in working memory while process-
ing intervening distractors. The target items arewords, arrows of differ-
ent lengths and angles, and the locations of elements in a grid. Garavan
involves keeping track of multiple internal counts, and measures errors
in counts and the cost of switching between them. Keep track involves
viewing an array of categories, and then identifying and remembering
words belonging to those categories. Stroop involves identifying the
color a word is printed in while inhibiting reading of the word. All three
episodic memory tasks involve timed study of a list of words, pictures,
or paired associates (respectively), and are scored by the number of
items a participant can produce immediately after study.

Using a structural equation modeling approach (Kane et al., 2004),
across the larger sample of 518 participants, we extracted estimates of
the four cognitive construct latent variables (i.e., gf, wm, ef, em).



Table 2
Cognitive tests.

Latent variable Test name Measure Detailed description

Fluid intelligence (gf) BOMAT matrix reasoning Correct trials Bocumer Matrizentest: BOMAT-advanced-short Version (2009)
Number series Correct trials Bernreuter and Goodman (1941)
Letter sets Correct trials Ekstrom et al. (1976)

Working memory (wm) Reading span Total span Engle et al. (1999a)
Rotation span Total span Shah and Miyake (1996)
Symmetry span Total span Unsworth et al. (2009)

Executive function (ef) Garavan Total errors Garavan (1998)
Keep track Words recalled Yntema (1963)
Stroop Stroop effect Stroop (1935)

Episodic memory (em) Immediate free recall words Words recalled Engle et al. (1999b)
Immediate free recall pictures Pictures recalled Unsworth et al. (2009)
Immediate free recall paired associates Pairs recalled Uttl et al. (2002)
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Because Garavan and Stroop produce error scores, while all others are
measures of accuracy, we inverted these two values (i.e., multiplied
by−1) in order to ensure all cognitive variables had the same sign.

Structural MRI protocol

High resolution T1-weighted brain imageswere acquired using a 3D
MPRAGE (Magnetization Prepared Rapid Gradient Echo Imaging) pro-
tocol with 192 contiguous axial slices, collected in ascending fashion
parallel to the anterior and posterior commissures, echo time (TE) =
2.32 ms, repetition time (TR) = 1900 ms, field of view (FOV) =
230 mm, acquisition matrix 256 mm × 256 mm, slice thickness =
0.90 mm, and flip angle = 9°. All images were collected on a Siemens
Magnetom Trio 3T whole-body MRI scanner.

Automated volumetrics, cortical thickness estimates, and white-matter
tractography

Automated brain tissue segmentation and reconstruction of the
T1-weighted structural MRI images were performed using the standard
recon-all processing pipeline in FreeSurfer, version 5.2.0 (Released May
2013; http://surfer-nmr.mgh.harvard.edu/). This produced estimates of
1) cortical thickness, 2) cortical volumes, 3) sub-cortical volumes, 4) ven-
tricles, and 5) corpus callosum (Dale et al., 1999; Desikan et al., 2006;
Fischl and Dale, 2000; Fischl et al., 2002, 2004a, 2004b). Segmentations
and tractography were manually checked for errors. Estimates in the
left and right hemispheres were summed to produce bilateral estimates,
and all values were converted to z-scores to control for differences
in scale. A complete list of estimated structures appears in Table 3.
FreeSurfer produced automated segmentation closely approximate
hand tracing (Morey et al., 2009), but like all segmentation proce-
dures may introduce systematic bias.

The diffusion tensor imaging fractional anisotropy (FA) data was an-
alyzed using tract-based spatial statistics in FSL (Smith, 2002; Smith
et al., 2004, 2006). This pipeline involves fitting a tensor model to the
raw diffusion data using fMRIDB's diffusion toolbox, and non-brain tis-
sues were removed using FSL's brain extraction tool. All subjects' FA
data were then aligned into a common space using the nonlinear regis-
tration tool FNIRT (Andersson et al., 2007; Rueckert et al., 1999). Next,
the mean FA image was created and thinned to create a mean FA skele-
ton that represents the centers of all tracts common to the group. Each
subject's aligned FA data was then projected onto this skeleton to create
an estimate of the subject-level value associated with each tract.

Radial diffusivity (RD) values were also obtained from this analysis.
Due to the physical relationship between RD and FA values, tract-wise
measures of RD and FA are all strongly negatively correlated (R values
between−.44 and−.9, all p b .001 after Bonferroni correction). Princi-
ple component analysis (PCA) of these FA and RD values produced a sin-
gle factor which accounted for 64% of the variance of the full sample,
upon which all 22 FA and RD values loaded with factor scores between
.55 and .95. This suggests that RD carries similar information to FA and
we did not include it in the main analysis presented here, however,
we did include these RD values in our follow-up validation analysis.

Grand table of multi-modal demographic, cognitive, and imaging variables

All variables measured with the above methods appear in Table 3 in
the order they appear in Fig. 1.

In our follow-up analysis we also included radial diffusivity (RD)
values for each of the white matter tracts reported above.

Global correlations and independent component analysis

Global correlations were computed among all variables and plotted
using MATLAB (MATLAB and Statistics Toolbox Release, 2014a). First
level independent components were computed using the Fast-ICA algo-
rithm (Hyvärinen, 1999), with the number of components determined
by scree plot inspection of the whitened correlation matrix (Costello
and Osborne, 1994). Standardized residuals with respect to the IC factor
loadings (i.e., the Ematrix)were obtained by computing a general linear
model (GLM)with all of the variables in Table 3 as dependent variables,
and the four IC factor scores as independent variables (i.e., computing
residuals across all of our measures with respect to model including
only the four independent components). This GLM was computed in
SPSS (IBM Corp. Released, 2013). The second-level ICA was performed
on these residuals in the same fashion as the first-level. In both cases
we used cross-validation in ICA extraction (Westad and Kermit, 2003).
This uses a Monte-Carlo procedure that extracts IC multiple times, and
checks correlation between IC components to ensure that the factors
were robust to the initial conditions of the ICA algorithm.

We additionally validate these ICs by performing a follow-up analy-
sis using a slightly different variable set (excluding the demographic
variables, including the radial diffusivity variables). We report the rela-
tionship between the IC values extracted in this analysis and the IC
values extracted in the main analysis.

IC projections onto brain maps

After obtaining first- and second-level ICs of brain variation in our
sample, we selected a representative participant's brain segmentation,
and for each region, applied the loading estimated by the IC to the
voxels that fell within that segment, and then transformed the brain
back into MNI space (Mazziotta et al., 1995). We overlaid these values
on the MNI CSF template with a threshold corresponding to an IC
score with an absolute value of 1.0 or greater. Values above this thresh-
old correspond to variables that contributemore to the variability of the
IC than to the variability of the original data set, (i.e., these are variables
that inform the IC), while variables below this threshold are less
informative to this IC than they are to the dataset as a whole. All four
cognitive factors were plotted using the IC color map (including those

http://surfermr.mgh.harvard.edu


Table 3
Grand table of measured variables.

Data categories Specific measures

Demographics & cardiovascular fitness Age
Years of education
Sex
VO2max percentile

Cognition Fluid intelligence (gf)
Working memory (wm)
Executive function (ef)
Episodic memory (em)
BOMAT (correct trials)
Number series (correct trials)
Letter sets (correct trials)
Reading span
Rotation span
Symmetry span
Garavan (inverse total errors)
Keep track words recalled
Stroop (inverse cost)
Immediate free recall words
Immediate free recall pictures
Immediate free recall paired associates

Cortical thicknesses Superior parietal
Postcentral
Precuneus
Lateral occipital
Mean cortical thickness
Superior temporal
Inferior parietal
Paracentral
Precentral
Middle temporal
Banks of superior temporal sulcus
Insula
Superior frontal
Supramarginal
Transverse temporal
Rostral middle frontal
Caudal middle frontal
Pars triangularis
Pars opercularis
Lateral orbitofrontal
Pars orbitalis
Frontal pole
Posterior cingulate
Inferior temporal
Cuneus
Peri calcarine
Rostral anterior cingulate
Medial orbitofrontal
Caudal anterior cingulate
Isthmus cingulate
Fusiform
Temporal pole
Lingual
Entorhinal
Parahippocampal

Cortical volumes Middle temporal
Inferior parietal
Inferior temporal
Rostral anterior cingulate
Posterior cingulate
Rostral middle frontal
Superior frontal
Precentral
Supra marginal
Lateral orbitofrontal
Fusiform
Precuneus
Insula
Medial orbitofrontal
Postcentral
Superior temporal
Caudal middle frontal
Paracentral
Superior parietal
Isthmus cingulate
Lateral occipital

Table 3 (continued)

Data categories Specific measures

Transverse temporal
Pars orbitalis
Pars opercularis
Caudal anterior cingulate
Pars triangularis
Entorhinal
Temporal pole
Parahippocampal
Frontal pole
Peri calcarine
Cuneus
Lingual

Sub-cortical volumes Total brain volume
Total intracranial volume
Hippocampus
Ventral diencephalon
Cerebellum cortex
Cerebellum white matter
Thalamus
Brain stem
Amygdala
Putamen
Accumbens area
Pallidum
Caudate

Ventricles Surface holes
Lateral ventricle
Choroid plexus
Third ventricle
Cerebrospinal fluid
Inferior lateral ventricle
Fourth ventricle

Corpus callosum CC posterior
CC mid posterior
CC central
CC mid anterior
CC anterior

White matter tractography Inferior fronto-occipital fasciculus
Superior longitudinal fasciculus
Temporal superior longitudinal fasciculus
Inferior longitudinal fasciculus
Anterior thalamic radiation
Forceps minor
Uncinate fasciculus
Cingulum bundle
Corticospinal tract
Forceps major
Hippocampal cingulum bundle
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that did not exceed the threshold). These first level ICs were regressed
from theoriginal data before computationof the second-level ICs. Because
the second level ICs had reduced statistical power (i.e., corresponded to
only the remaining variance of the sample) andwe used a stricter thresh-
old of 2.0.

Overlap with “rich club” front-parietal network co-activations

To test if our ICA derived anatomical maps overlapped with the
fronto-parietal “rich club” network (Jung and Haier, 2007; Van den
Heuvel and Sporns, 2011), we identified the cognitive variables, ana-
tomical segments, and white matter tracts (Table 4) implicated in this
network to create a mask. We then computed the correlation between
the loadings of our IC brain maps and this mask.

Results

Demographics and gross brain volumes are not strong, independent
predictors of cognitive factors

Within our sample, there were no significant correlations between
any of age, sex, education, or brain volume variables. Nor did these



Fig. 1. Intercorrelations in multimodal imaging and cognitive data. Global correlation matrix, range of uncorrected non-significant correlations are indicated. In the global correlation
matrix, interactions within similar measures (e.g., cortical thickness) exceed interactions between data types (e.g., cortical thickness and cortical volume), suggesting that these different
data types are driven by a small number of underlying sources of variance. Independent component analysis (right column) decomposes the global correlations into four underlying
sources of global variation.
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correlate with any of the four cognitive variables with one exception:
global brain volume was positively correlated with working memory
(R= .17, p b .03), evenwhen regressing out age, sex, and education var-
iables (R = .16, p b .03).

First level ICA: correlations within anatomical and cognitive data can be
characterized by independent component analysis

We computed the global correlation matrix between all measures re-
ported in Table 3 (Fig. 1 red values are strongly positive correlations, blue
strongly negative, green near 0. All R-values with a magnitude N .15
would pass an uncorrected one-sided t-test). Broadly speaking, variables
were highly correlated within measurement types (i.e., demographic,
Table 4
PFIT “rich club” network mask.

Data categories Specific measures

Cognition Fluid intelligence (gf)
Working memory (wm)
Executive function (ef)
Episodic memory (em)

Cortical thicknesses Superior parietal
Precuneus
Superior frontal

Cortical volumes Superior frontal
Precuneus
Superior parietal

Sub-cortical volumes Hippocampus
Thalamus
Putamen

Corpus callosum CC mid posterior
CC mid anterior

White matter tractography Superior longitudinal fasciculus
Superior longitudinal fasciculus temporal
Anterior thalamic radiation
Forceps minor
Uncinate fasciculus
Cingulum bundle
Cingulum bundle within hippocampus
cognitive factor, cognitive tests, cortical thickness, cortical volumes, sub-
cortical volumes, ventricles, corpus callosum, and fractional anisotropy).
In particular, the mean correlation within a data type was R = .43, p =
.07while across data typeR= .11, p= .32. This patternof intercorrelation
suggests that the data falls into clusters,with commonunderlying sources
of variance, and motivates our use of independent components analysis.

Scree plot inspection of the whitened data matrix and cross-
validation suggested that four ICs could be reliably extracted from the
global correlation matrix. Using the same color map (i.e., scaling the
total range of IC values to match the total range of correlation values),
we plot the four IC loadings next to the global correlation matrix
(Fig. 1) to show the relative weightings of each variable on each IC.
We constructed a multivariate GLM to examine the goodness of fit of
the first-level ICs with the ICs as the independent variable and Table 5
as the dependent variables. Next, we projected the IC colors onto a rep-
resentative brain (Fig. 2) to better visualize the spatial extent of each IC
inMNI space (Mazziotta et al., 1995). Belowwe consider the patterns of
the four first-level ICs, across anatomical and cognitive variables. While
we refer to these patterns as “positive” and “negative,” it should be
noted that one of the limits of ICA is that components are extracted
with an arbitrary sign. Thus, we emphasize the relative patterns be-
tween different measures rather than their absolute direction.
Underlying sources of variation described by first-level independent
components

At the first level, variables gathered by a single measurement
technique tended to group together into the first-level independent
Table 5
Global variance explained by the first-level independent components.

IC1 R2 = .12, p b .001
IC2 R2 = .19, p b .001
IC3 R2 = .13, p b .001
IC4 R2 = .15, p b .001
Goodness-of-fit of the four-factor model. R2 = .58, p b .001



Fig. 2. First-level ICA brain maps. Projecting these four independent components (ICs) onto a representative brain in standardized MNI space shows underlying sources of variation
associated with different brain regions. IC1: predominately fronto-parietal, with moderate positively loadings on cognitive factors. IC2: predominantly fronto-cortical, with slight
negative loadings on all cognitive factors. IC3: posterior- and sub-cortical located with negative loadings on cognitive factors. IC4: white matter and ventricles with negative loadings
on cognitive factors.
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components. The two exceptions to this general pattern of uniform var-
iation within a measurement type were demographics and cortical
thicknesses. These produced a complex pattern,wherein individual var-
iables contributed to different independent components and in different
directions.

None of the four first-level components had strong loadings
stemming exclusively from a single measurement type, but rather
fused variation estimated by multiple converging methods. These
contributions across measurement type did not clearly correspond
to individual demographic variables, cognitive factors, or anatomi-
cal divisions (e.g., “frontal lobe.”)

All of the first level components had cognitive loadings on all four
cognitive factors that exceeded the threshold with two exceptions:
theworkingmemory factor fell below threshold on IC1 and IC2. Howev-
er, only the first component (IC1) identified joint variation between
cognitive and anatomical data that pointed in the same direction
(i.e., greater cortical thickness implied greater cognitive scores). In all
other cases, cognitive variation was negatively related to anatomical
variation. Thus, we interpret these independent components (IC2–4)
as being sensitive to covariance among our measures not tied to abso-
lutemagnitudes of the variables. For example, we interpret IC2 as sensi-
tive cortical thinning across the lifespan (Salat et al., 2004; Zhou et al.,
2015) having characterized and separated the independent signal of ab-
solute brain size in IC1 and IC3.

Descriptions of each of the first-level components

The first independent component (IC1) had positive loadings for
female sex, cognitive factor scores, cognitive tests, and positive loadings
across several cortical thicknesses. It had negative loadings on cortical
and sub-cortical volumes, ventricle size, and white matter integrity.
Given the opposite anatomical relationships IC1 seems to characterize
components of the cortical surface. We interpret this component in
terms of the relationships between sex, brain volume, and cognitive
scores. Consistent with previous literature, females have smaller brains
than males, a greater proportion of gray matter, and equivalent cogni-
tive scores (Colom et al., 2009; Goh et al., 2011; Haier et al., 2009).
Thus, there must be an underlying source of joint brain and cognitive
variation that models this pattern. We suggest that IC1 captures this re-
lationship, and provides a specific map of brain regions most likely to
mediate this relationship. The “brain map” projection of IC1 (Fig. 2A)
showed that the positive scores related to variation in cortical thickness
predominately located in fronto-parietal cortical areas, with weaker
loadings on superior and middle temporal areas. This map is most



Table 6
Relationship between second analysis and main analysis.

Main analysis IC Age Sex

Secondary IC1 R2 = .79, p b .001 R2 = .08, p b .001 R2 = .07, p b .001
Secondary IC2 R2 = .53, p b .001 R2 = .02, p b .07 R2 = .13, p b .001
Secondary IC3 R2 = .45, p b .001 R2 = .05, p b .002 R2 = .04, p b .01
Secondary IC4 R2 = .14, p b .001 R2 b .01, p = .8 R2 b .01, p b .39
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broadly consistent with the diffuse, predominately gray matter-driven
relationships between demographics, brain anatomy, and cognitive fac-
tors previously reported in the literature. We loosely refer to this com-
ponent as “cortical gray matter,” and note its generally positive
loadings on cognitive factors.

IC2 produced strong positive loadings on a variety of cortical thickness
and cortical volumes, with strong negative loadings on the demographic
variables of age and years of education. It was also characterized by
weak, negative loadings on cognitive factors, and sub-cortical brain vol-
umes, including within the corpus callosum. We broadly interpret this
pattern as possibly paralleling general cortical thinning that accompanies
aging (Salat et al., 2004; Zhou et al., 2015). Consistent with previous liter-
ature that emphasizes greater cortical thinning in frontal regions the brain
map projection of IC2 (Fig. 2B) showed especially strong positive loadings
in medial frontal regions, with negative loadings in sub-cortical volumes.
We loosely refer to this component as “anterior cortex.” In light of this
factor's negative loadings on cognitive factors we interpret it as likely
indexing cortical thinning independent of overall cortical thickness.

The third independent component (IC3) had strong positive load-
ings on sub-cortical volumes and cortical thicknesses. It also had posi-
tive loadings on white matter tracts, both in the corpus callosum, and
as assessed by fractional anisotropy. It was also the only first-level com-
ponents to have a positive loading on VO2max that exceeded our thresh-
old. This component had negative loadings on female sex, and cognitive
variables. As in the case of IC1, we interpret the relative direction of this
relationship: males had reliably larger sub-cortical brain volumes, and a
greater proportion ofwhitematter, but did not have reliably higher cog-
nitive variables. As with IC1, IC3's brain map projection was not
Fig. 3. Residual variation unaccounted for by first-level sources. After regressing out the effec
decomposed into two second-level residual ICs.
uniformly distributed: it displayed greater loadings in posterior and
sub-cortical brain regions (Fig. 2C). We loosely refer to this component
as “subcortical gray matter,” and note its relationship to overall brain
size.

The final first-level component (IC4) had positive loadings on white
matter tracks, and ventricleswith negative loadings on cortical volumes
and cognitive factors. It had positive loadings on age and education, as
well as female sex. This possibly suggests that this component is sensi-
tive to ventricular size andwhitematter content, and that these proper-
tiesmay differ by sex and age. It's negative loadings on graymatter help
to explain its negative relationship to the cognitive factors. The brain
map projection (Fig. 2D) showswhitematter and ventricles.We loosely
refer to this component as “subcortical white matter and ventricles.”

Do demographic variables drive the independent component analysis?

To test if the independent components were strongly driven by the
possibly non-linear contributions of the demographic variables, we re-
peated the IC analysis excluding these variables, but includingmeasures
of white matter integrity (i.e., radial diffusivity values for each of the
white matter tracts included in the main analysis). This produced ICs
similar to those produced in the original analysis. We report the corre-
lations between the ICs computed in themain analysis and the ICs com-
puted in the secondary analysis, as well as the relationship between the
secondary ICs and the excluded demographic variables. There were
strong relationships between the ICs calculated across both analyses
(Table 6), suggesting that they contained similar information about in-
dividual variation. The one exception was IC4, which had originally
been strongly driven bywhite-matter variation, aswell as having strong
loadings on age and sex in our original analysis. In the follow-up analy-
sis excludingdemographics, IC4 had no relationshipwith age or sex, and
was a relatively poor model of variation associated with the original IC.
This suggests that the original IC4 modeled variation predominately as-
sociated with demographic and FA values.

However, age and sex were relatively weakly related to variation on
any of the ICs in the secondary analysis. This suggests that demographic
measures are not strong models of the cognitive and anatomical varia-
tion captured by the ICs.
ts of the first four ICs, considerable cross-domain residual correlations remain. These are



Table 8
Correlation with rich club structures.

Independent components Correlation with FPRCN

IC1 R = −.05, p = .57
IC2 R = −.29, p b .002*
IC3 R = .07, p = .44
IC4 R = .08, p = .36
RIC1 R = .29, p b .002*
RIC2 R = .28, p b .002*

* Denotes significant results.

Table 7
Global residual variance explained by the RICs.

RIC1 R2 = .08, p b .01
RIC2 R2 = .12, p b .001
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Second level ICA: after accounting for first-level sources of variance, strong
cognitive-brain relationships are present in residuals

Taken together, the fourfirst-level ICs explained 58% of the cognitive
and anatomical variation in our sample. We attempted to examine the
residual 42% using a hierarchical approach.

To determine if there were effects beyond those captured in the
first four ICs, we performed a hierarchical factor analysis. This in-
volved a multivariate regression to compute the residuals values
for each variable in our analysis partialling out effects associated
with the four first-level ICs (i.e., we produced a matrix of partial cor-
relations that accounted for the effects of the independent compo-
nents). This produced a residual correlation matrix (Fig. 3). Within
this matrix all relationships should be interpreted as variance unac-
counted for by first-level ICs rather than as direct correlations.

This matrix had generally weaker relationships than in the original
data and the strong intercorrelations that characterized the factor struc-
ture of the initial measures were absent. Instead, the strongest relation-
ships were now across data types, suggesting that these relationships
may have been obscured in the first-level analysis due to the large
sources of variance associated with the four first-level ICs.

Notably, cross-modal correlations remained strong for demo-
graphic variables (in the negative direction), as well as for cognitive
factors and white-matter fractional anisotropy (both in the positive
direction). This suggests that the first level model including IC1-4
tends to overcorrect for variation associated with demographic
variables, while failing to account for variation associated with cog-
nitive factors and white matter. Scree plot inspection of the whit-
ened matrix suggested that two residual ICs could be extracted
from this matrix. As in the previous analysis, these were visualized
beside the residual correlation matrix (Fig. 3). Goodness of fit of
these residual components was also computed (Table 7).

The first factor of these residual components (RIC1) contained
strong positive loadings for residual variation associated with white
matter fractional anisotropy and the cognitive tests. This was especially
true of the cognitive factors: the three strongest loadings on this compo-
nent were the executive function, fluid g, and working memory factors.
Fig. 4. Second level ICA brainmaps. Projecting the two residual ICs onto a representative brain i
the “rich club” fronto-parietal control network, with especially strongweightings onwhitematt
strong loadings on white matter and ventricles.
RIC1 produced strong negative loadings for residual variation associated
with the demographic variables, age, sex and education. RIC1 also pro-
duced weaker positive loadings across distributed cortical thicknesses
and subcortical volumes. The brain-map (Fig. 4A) projection showed
that these positive loadings tended to cluster in positive loadings on a
collection of cortical thicknesses (superior and middle frontal, inferior
parietal and precuneus, superior temporal), with strong positive
loadings on the white matter fiber tracts connecting those areas
(e.g., superior longitudinal fasciculus and forceps minor). This pat-
tern suggests that RIC1 index a source of variation that jointly con-
tributes to cognition and neuroanatomy. In contrast to the P-FIT
model however, superior parietal cortex was not a strong contribu-
tor to RIC1. RIC1 also included some notable, sub-cortical structures
such as the cerebellum (Strick et al., 2009).

The second residual component had relatively weak loadings, only
loading heavily on corpus callosum (positively), and ventricles (nega-
tively). It had a single strong positive value in white-matter fractional
anisotropy in the inferior frontal–occipital fasciculus. The brain map
(Fig. 4B) suggests that RIC2 indexes variation associated with the size
and shape of midline white matter and ventricles. It did not contain
strong loadings on cognitive factors or tests suggesting that this compo-
nent was relatively specific to anatomy.

Degree of overlap with fronto-parietal “rich club” network for first and
second-level ICs

To test how well the PFIT “rich club” modeled the relationship be-
tween neuroanatomy and high-level cognitive factors, we computed
correlation between the IC factor scores and the regions involved in
the “rich club” (Table 8).

Of the first level ICs, only IC2 was significantly related to the fronto-
parietal “rich club” network map, and this relationship was negative,
n standard space. RIC1) Has strong cognitive loadings, and a spatial profile highly similar to
er connectivitywithin this network. RIC2) no supra-threshold cognitive loadings, but some
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driven by negative cognitive factor loadings, and negative loadings on
white matter and thalamus. However, both second-level ICs, were pos-
itively related to the PFIT rich club network. For RIC1, these relation-
ships were driven primarily by strong loadings on white matter tracts
and cognitive factors, but also by weaker loadings on cortical thick-
nesses in fronto-parietal regions. For RIC2, these loadings were strongly
driven by white-matter tracts but more weakly driven by a variety of
cortical thicknesses and cognitive factors. However, RIC2 had more
diffuse loadings, most of which fell below our factor score threshold
suggesting that this may be a less reliable pattern than that of RIC1.

Discussion

From a large number of variables collected acrossmultiple methods,
we characterized a small number of underlying, independent sources of
variation using hICA in healthy young adults (n = 190). All of the first
level sources were tied to cognitive factors, but separated the anatomi-
cal and demographic measures into 1) sex, fronto-parietal structures,
2) age, education, and anterior cortical gray matter, 3) fitness, posterior
cortical and sub-cortical gray matter, and 4) sex and white matter.

At this first level, the sources of variation tied to demographic and
gross morphological variables, but were even more strongly tied inter-
correlations among variables measured with similar methods. What's
more, these sources did not uniformly contribute across whole catego-
ries of variables, instead producing different loadings for each manifest
variable. Thus, these first-level anatomical sources represent novel
estimates of underlying sources of individual variation that cannot be
solely explained with reference to traditional measures of individual
variation (sex, age), nor by reference to specific anatomical or functional
networks.

However, after controlling for these first-level sources of variation,
one second-level component was, 1) strongly related to cognitive vari-
ables, 2) positively related to specific gray matter regions and white
matter fiber tracts, and 3) highly overlapping with the P-FIT “rich
club” functional network linked to fluid g, executive function, and
working and episodic memory by functional imaging and lesion
studies (Bergmann et al., 2012; Gray et al., 2003; Rypma and
Prabhakaran, 2009). This residual factor, produced by a data-
driven approach, provides converging evidence for the importance of
these regions to cognitive function (Barbey et al., 2014; Colom et al.,
2009; Luders et al., 2009;McDaniel, 2005), and unlike thefirst-level com-
ponents it cannot be interpreted as an artifact of demographic variations
or gross morphology because these sources of variance were removed in
the first-level analysis. Thus, we suggest that the novel, data-driven first-
level sources of variation may serve as useful controls in exploring high-
level hypotheses for links between anatomical variations to cognitive
function.

There are some important limitations to this approach. The indepen-
dent components describe our sample, which was predominately
college-aged adults, thus the raw factor loadingsmay not be directly ap-
plicable to other samples, especially ones with substantially different
demographics. What's more, the independent components depend
heavily on the variables included in the analysis, and inclusion of alter-
native neuroimaging measures might produce qualitatively similar, but
quantitatively different outcomes (for example, we tested including ra-
dial diffusivitymeasures ofwhitematterwhichproduced slightly differ-
ent estimates first-level sources, especially in our component related to
white matter).

However, the ICA approach has certain limitations. It extracts com-
ponents without sign making interpretation of the direction of a rela-
tionship impossible and, it assumes an underlying linear mixture of
components, while some anatomical and cognitive links may be non-
linear. Most critically however, ICA extracts underlying independent
sources. This requires careful interpretation of their relationship to the
observed variables, because these are mixtures of these underlying
sources. Thus characterizing the underlying independent components
in terms of their variables rather than variables in terms of their sources
can produce incorrect interpretations.

An important example of this is the predominately negative rela-
tionships between anatomical and cognitive factors in the first level
ICs. One of these is easily interpretable: IC4 loaded positively on ventri-
cles and negatively on cognitive factors suggesting larger ventricles are
related to lower cognitive scores. However, IC2 and IC3 have positive
loadings on cortical and subcortical volumes, but negative loadings on
cognitive factors. We do not interpret this as more brain leading to
poorer cognition. Each manifest variable is the result of a mixture of
the ICs, and thus variable-level interpretations must involve reference
to all of the underlying ICs. For example, given its loading on a wide va-
riety of volumetricmeasures aswell as sex,we suggested that IC3might
represent a gross brain size. However, since males have reliably larger
heads, but not reliably higher cognitive factors, some underlying source
of variation ought to be positively related to brain size but negatively
related to cognitive variables. The positive co-variation between brain
and cognitive variables was already captured by IC1, IC4, and the resid-
ual ICs. Similarly, our interpretation of IC2's negative relationship be-
tween cortical areas and cognitive factors is that IC2 models cortical
variation unaccounted for by an individual's global pattern of cortical
thickness (best modeled by IC1), or volumetrics. Given the age loading
on IC2 (and recent literature showing age-related cortical thinning in
adolescence and early adulthood Zhou et al., 2015; Raz et al., 2005,
Schuff et al., 2012), we suggested that IC2 might represent age-related
changes in cortex, but it could alsomodel variation related to brain inju-
ry or disease processes thatwould ordinarily bemasked by ordinary an-
atomical variation.

This care is especially warrantedwhen interpreting the second-level
residual components.While it was tied to variationwithin the P-FIT net-
work model, RIC1 explains only 8% of the residual variation in our sam-
ple, while the four first-level factors explained 58% of the total variation
across 124 measures of individual difference. We did not observe
sources in our sample that modeled links between specific cognitive
tests and specific anatomical correlates. Nor were the novel sources of
individual variation well captured by traditional measures of individual
difference such as age and sex. Rather,we observedbroadpatterns of in-
dividual difference characterized bymultiple underlying sources of var-
iance that cut across whole categories of cognitive and anatomical
factors in complex patterns.

Taken together, these results have implications for any study seeking
to control for individual brain variability or exploring links between
specific cognitive functions to and specific anatomical correlates. Our
results suggest that individual variability in brain and cognitive function
cannot be reliably accounted with a simple linear model including a
small number of manifest variables such as age, sex, and brain size.
Brains also vary in reliable ways over multiple dimensions of size,
shape, and connectivity each of which contributes in predictable ways
to covariation across anatomical regions and cognitive abilities. Addition-
ally, while specific cognitive-anatomical correlations are undoubtedly
present, they are rarely independent of these broad underlying sources
of individual variation and should be interpreted as such.

We suggest that data-driven approaches, such as the one used here,
can be an appropriate tool for generating robust models of the underly-
ing sources of individual difference within a large sample and for
identifying specific neuroanatomical-cognitive links that are not well
characterized by these first-level sources. We were able to identify
joint sources of anatomical and cognitive variation at multiple levels
broadly consistent with previous functional and lesion literature on
the distributed nature of high-level cognitive abilities including with
areas of the core “rich club,” fronto-parietal network, and the white
matter tracts that form the anatomical basis for functional communica-
tions within this network (Engle et al., 1999a; Barbey et al., 2014).

We see the current result as part of the general trend toward in-
creasingly data-driven multivariate, multi-modal neuroimaging ap-
proaches aimed at discovering broad, multi-voxel, network level
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interactions tied to cognitive performance (Biswal et al., 2010). AsMRI-
assessed anatomical data sets grow, such data-driven approaches can
produce increasingly precise and reliable characterizations of the un-
derlying factors—anatomical and cognitive—that combine to make
each brain unique.

Conclusion

We identified sources of individual variation in healthy adults
across multiple measures and multiple levels using a hierarchical in-
dependent component analysis. At the first level, these components
largely corresponded to strong intercorrelationswithin data types, aswell
as broad effects of demographics, cognitive factors, and anatomy. Control-
ling for first-level effects identified strong joint cognitive-anatomical
second-level factors, particularly in white matter tracts connecting
regions in the fronto-parietal “rich club.” However, this second-level
component explained a relatively small amount of individual variation.
This approach suggests that there are a small number of underlying
sources of individual variation that contribute to a wide variety of ana-
tomical and cognitive variables. Multivariate data-driven approaches are
likely more appropriate for identifying, and controlling for cognitive and
brain variation at multiple levels.
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