Lemma 1. If \boldsymbol{A} has unit-norm columns and coherence $\mu=\mu(\boldsymbol{A})$, then \boldsymbol{A} satisfies the RIP of order k with $\delta_{k}=(k-1) \mu$ for all $k<\frac{1}{\mu}$.

Proof. If \boldsymbol{A} has unit-norm columns and coherence $\mu=\mu(\boldsymbol{A})$, it needs to be shown that

$$
\left(1-\delta_{k}\right)\|x\|_{2}^{2} \leq\|A \boldsymbol{x}\|_{2}^{2} \leq\left(1+\delta_{k}\right)\|x\|_{2}^{2} \quad \forall \boldsymbol{x} \in \Sigma_{k}
$$

with $\delta_{k}=(k-1) \mu$ and $k<\frac{1}{\mu}$. Let $S \in\{1, \ldots, n\}$ denote the support of \boldsymbol{x} with $|S|=k$. Denote the restricted matrix by A_{s} and consider $\|\boldsymbol{A} \boldsymbol{x}\|_{2}^{2}$.

$$
\begin{equation*}
\|\boldsymbol{A} \boldsymbol{x}\|_{2}^{2}=\left\|\boldsymbol{A}_{s} \boldsymbol{x}_{s}\right\|_{2}^{2} \|=\left\langle\boldsymbol{A}_{s} \boldsymbol{x}_{s}, \boldsymbol{A}_{s} \boldsymbol{x}_{s}\right\rangle=\boldsymbol{x}_{s}^{T} \boldsymbol{A}_{s}^{T} \boldsymbol{A}_{s} \boldsymbol{x}_{s} \tag{1}
\end{equation*}
$$

Before proceeding further, we state and prove the claim below which concerns the matrix $\boldsymbol{A}_{s}^{T} \boldsymbol{A}_{s}$.
Claim 1. $\boldsymbol{A}_{s}^{T} \boldsymbol{A}_{s}$ is symmetric and positive semi-definite. The eigenvalues of $\boldsymbol{A}_{s}^{T} \boldsymbol{A}_{s}$ are real and positive. The eigenvectors of $\boldsymbol{A}_{s}^{T} \boldsymbol{A}_{s}$ are orthogonal.

Proof. Symmetry is trivial

$$
\left(\boldsymbol{A}_{s}^{T} \boldsymbol{A}_{s}\right)^{T}=\boldsymbol{A}_{s}^{T} \boldsymbol{A}_{s}
$$

To show positive semi-definiteness, consider $\boldsymbol{y}^{T}\left(\boldsymbol{A}_{s}^{T} \boldsymbol{A}_{s}\right) \boldsymbol{y}$ for any $\boldsymbol{y} \in \mathcal{R}^{n}$.

$$
\boldsymbol{y}^{T}\left(\boldsymbol{A}_{s}^{T} \boldsymbol{A}_{s}\right) \boldsymbol{y}=\left(\boldsymbol{y}^{T} \boldsymbol{A}_{s}^{T}\right)\left(\boldsymbol{A}_{s} \boldsymbol{y}\right)=\left(\boldsymbol{A}_{s} \boldsymbol{y}\right)^{T}\left(\boldsymbol{A}_{s} \boldsymbol{y}\right)=\left\|\boldsymbol{A}_{s} \boldsymbol{y}\right\|_{2}^{2} \geq 0
$$

Since $\boldsymbol{A}_{s}^{T} \boldsymbol{A}_{s}$ is symmetric, it follows that it has real eigenvalues and orthogonal eigenvectors.
Let $\left\{\boldsymbol{\beta}_{i}\right\}_{i=1}^{n}$ denote the orthonormal eigenvectors of $\boldsymbol{A}_{s}^{T} \boldsymbol{A}_{s}$. The corresponding eigenvalues will be denoted by $\boldsymbol{\lambda}=\left\{\lambda_{i}\right\}_{i=1}^{n}$. Any vector $\boldsymbol{x} \in \mathcal{R}^{n}$ can be expanded in the basis $\left\{\boldsymbol{\beta}_{i}\right\}_{i=1}^{n}$. With this, (1) can be written as

$$
\begin{aligned}
\|\boldsymbol{A} \boldsymbol{x}\|_{2}^{2}=\boldsymbol{x}_{s}^{T} \boldsymbol{A}_{s}^{T} \boldsymbol{A}_{s} \boldsymbol{x}_{s} & =\left(\sum_{i} c_{i} \boldsymbol{\beta}_{i}^{T}\right) \boldsymbol{A}_{s}^{T} \boldsymbol{A}_{s}\left(\sum_{j} c_{j} \boldsymbol{\beta}_{j}\right) \\
& =\left(\sum_{i} c_{i} \boldsymbol{\beta}_{i}^{T}\right)\left(\sum_{j} c_{j} \boldsymbol{A}_{s}^{T} \boldsymbol{A}_{s} \boldsymbol{\beta}_{j}\right)=\left(\sum_{i} c_{i} \boldsymbol{\beta}_{i}^{T}\right)\left(\sum_{j} c_{j} \lambda_{j} \boldsymbol{\beta}_{j}\right) \\
& =\sum_{i} \sum_{j} c_{i} c_{j} \lambda_{j} \boldsymbol{\beta}_{i}^{T} \boldsymbol{\beta}_{j}=\sum_{i} \sum_{j} c_{i} c_{j} \lambda_{j} \delta_{i, j} \\
& =\sum_{i} c_{i}^{2} \lambda_{i}
\end{aligned}
$$

To bound $\|\boldsymbol{A x}\|_{2}^{2}$, we note that

$$
\begin{equation*}
\min (\boldsymbol{\lambda}) \sum_{i} c_{i}^{2} \leq \sum_{i} c_{i}^{2} \lambda_{i} \leq \max (\boldsymbol{\lambda}) \sum_{i} c_{i}^{2} \Longrightarrow \min (\boldsymbol{\lambda})\|\boldsymbol{x}\|^{2} \leq\|\boldsymbol{A} \boldsymbol{x}\|_{2}^{2} \leq \max (\boldsymbol{\lambda})\|\boldsymbol{x}\|_{2}^{2} \tag{2}
\end{equation*}
$$

It remains to find the minimum and maximum eigenvalues of $\boldsymbol{A}_{s}^{T} \boldsymbol{A}_{s}$ via Grešgorin theorem. Let \boldsymbol{A}_{s}^{i} denote the i column of \boldsymbol{A}_{s}. With the assumption that \boldsymbol{A} has unit-norm columns in consideration, The (i, j) the entry of $\boldsymbol{A}_{s}^{T} \boldsymbol{A}_{s}$ is given by

$$
\left(\boldsymbol{A}_{s}^{T} \boldsymbol{A}_{s}\right)_{(i, j)}= \begin{cases}1 & i=j \\ \left\langle\boldsymbol{A}_{s}^{i}, \boldsymbol{A}_{s}^{j}\right\rangle & i \neq j\end{cases}
$$

From Grešgorin theorem, the eigenvalues of $\boldsymbol{A}_{s}^{T} \boldsymbol{A}_{s}$ with entries $\left(\boldsymbol{A}_{s}^{T} \boldsymbol{A}_{s}\right)_{(i, j)}, 1 \leq i, j \leq n$, lie in the union of disks $d_{i}=d_{i}\left(c_{i}, r_{i}\right), 1 \leq i \leq n$, centered at 1 with radius

$$
r_{i}=\sum_{j \neq i}\left|\boldsymbol{A}_{s}^{T} \boldsymbol{A}_{s}\right|_{(i, j)}=\sum_{j \neq i}\left|\left\langle\boldsymbol{A}_{s}^{i}, \boldsymbol{A}_{s}^{j}\right\rangle\right| \leq(k-1) \mu
$$

where the last bound follows from the coherence of \boldsymbol{A} i.e $\mu=\max _{1 \leq i, j \leq n}\left|\left\langle\boldsymbol{A}_{s}^{i}, \boldsymbol{A}_{s}^{j}\right\rangle\right|$. With this, $\min (\boldsymbol{\lambda}) \geq$ $1-(k-1) \mu$ and $\max (\boldsymbol{\lambda}) \leq 1+(k-1) \mu$. Using these bounds in (2) results

$$
\begin{equation*}
(1-(k-1) \mu)\|\boldsymbol{x}\|^{2} \leq\|\boldsymbol{A} \boldsymbol{x}\|_{2}^{2} \leq(1+(k-1) \mu)\|\boldsymbol{x}\|_{2}^{2} \tag{3}
\end{equation*}
$$

With this, A satisfies the RIP of order k with $\delta_{k}=(k-1) \mu$

$$
\begin{equation*}
\left(1-\delta_{k}\right)\|\boldsymbol{x}\|^{2} \leq\|\boldsymbol{A} \boldsymbol{x}\|_{2}^{2} \leq\left(1+\delta_{k}\right)\|\boldsymbol{x}\|_{2}^{2} \tag{4}
\end{equation*}
$$

RIP requires $\delta_{k} \in(0,1)$ which implies that $k>1$ and $k<\frac{1}{\mu}+1$.

