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THE PROBLEM OF SINGLE VARIABLE CALCULUS

I Consider a function f : R→ R. We want to find the critical
points.

I Compute f ′ and solve f ′ = 0
I Some problems in physics are minimization

problems(minimum energy).
I We want to extend this notion but before doing so we need

to understand functionals.
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INTRODUCTION TO FUNCTIONALS

A functional is a mapping from a space of functions to a real
number f : F→ R. What does this mean? Here are some
examples.
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CALCULUS OF VARIATIONS EXAMPLES(1)

I Consider a set of curves on a plane. The length of the
curve is a functional.

I Consider all possible paths joining two given points A and
B. Consider a particle that moves along these paths. The
time the particle takes to traverse the path is a
functional.(Fermat’s principle, Brachistochrone problem)

I Let I =
∫ b

a f (x)dx. Then for well defined functions f , I is a
functional.
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CAN WE DO CALCULUS ON FUNCTIONALS?

I Yes! but we have to extend the notion of derivatives as
applied to functions(not points anymore).

I This takes us into an area of mathematics called calculus of
variations(functional analysis).

I The most important result in this area is due to
Euler(1707− 1783).
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FIRST VARIATION OF A FUNCTIONAL

I J stationary at u requires

dJ(u + εη)

dε

∣∣∣∣
ε=0

= 0 = 〈DJ(u), η〉︸ ︷︷ ︸ = 0

for all admissible η
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EULER’S EQUATION

I Let F(x, y, z) be a C2 function. Let us consider all the
functions y(x) which are continuously differentiable for
a ≤ x ≤ b and satisfy the boundary conditions

y(a) = A, y(b) = B

I We want to find the functional for which the functional

J[y] =
∫ b

a
F(x, y, y′)dx

has an extremum.
I Euler showed that such a functional has to satisfy

Fy −
d

dx
Fy′ = 0
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EULER’S EQUATION APPLICATION

I Example: J[y] =
∫ b

a

√
1 + [y′(x)]2 dx

I Apply Euler’s equation:

∂F
∂y
− d

dx
∂F
∂y′

= 0

0− d
dx

y′(x)√
1 + [y′(x)]2

= 0

y′(x) =

√
c2

1− c2

I Hence it is a straight line as desired. (To find explicitly
apply boundary conditions).
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EULER’S EQUATION EXTENDED

J(u) =
∫

B
F(x,u,∇u)−

∫
S2

φ(x,u)ds

The Euler equations are then given by:

∂F
∂ui
−
(
∂F
∂ui,j

)
,j
= 0 in B

∂F
∂ui,j

· nj =
∂φ

∂ui
on S2
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VAINBERG’S THEOREM(1)

I Given a functional, we have established that Euler’s
equations are sufficient conditions for extremum.

I That is let

〈DJ(u), η〉︸ ︷︷ ︸ = 0

G(u, η) = 0

When is G(u, η) the first variation of a functional J(u, η)?
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VAINBERG’S THEOREM(2)

I We apply Vainberg’s reciprocity theorem. There is a
functional J(u) such that 〈DJ(u), η〉 = G(u, η) iff

〈DG(u, η), ξ〉 = 〈DG(u, ξ), η〉

I If the condition is satisified

J(u) =
∫ 1

0
G(tu,u) dt
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THE EQUATIONS OF LINEAR ELASTICITY

σij,j + fi = 0 in B

σijnj = ti on S2

εij = u(i,j) in B

ui = ui on S1

σij(εij) =
∂W
∂εij

in B
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STEP 1: INTEGRAL FORM (1)
I Weighted average sense. Corresponding to u, σ and ε, let

the virtual parameters be η, α and β respectively.(This is
quite the same step we took when we derived the principle
of virtual work except now it is a three field formulation).

I G
(
(u, ε, σ), (η, α, β)

)
=

∫
B

[(
− σij,j + fi

)
ηi +

(
σij(ε)−

∂W
∂εij

)
αij +

(
u(i, j)− εij

)
βij

]
dv+∫

S2

(
σijηj − ti

)
ηi dS +

∫
S1

(
ui − ui

)
βijηj dS = 0

(1)

I Note that each term represents work done by the virtual
field.
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STEP 1: INTEGRAL FORM (2)
I To simplify this, we use the following mathematical

relationship:∫
σij,j ηi dv =

∫
div(ηi σij)dV −

∫
ηi,j σij dV

Apply divergence theorem

σij,j ηi dV =

∫
S1+S2

(σij ηi)nj dS−
∫
ηi,j σij dV

I So we can rewrite (1) as G
(
(u, ε, σ), (η, α, β)

)
=∫

B

[
− σij ηi,j ηi − fiηi +

(
σij(ε)− σij

)
αij +

(
u(i, j)− εij

)
βij

]
dv+

+

∫
S1

[(
ui − ui

)
βij + σijηi

]
nj dS−

∫
S2

ti ηi dS = 0

(2)
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STEP 2: CHECK RECIPROCITY

I Now we ask if the expression (2) can be derived from a
functional. For that, we need to check the reciprocity
condition.〈

DG
(
(u, ε, σ), (η, α, β)

)
, (η′, α′, β′)

〉
=〈

DG
(
(u, ε, σ), (η′, α′, β′)

)
, (η, α, β)

〉 (3)

This can be shown to be true.
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STEP 3: APPLY VAINBERG TO FIND FUNCTIONAL

I Now we are ready to compute our functional J(u, ε, σ)
using Vainberg’s recipe.

I J(u, ε, σ) =∫ 1

0
G
(
(tu, tε, tσ), (u, ε, σ)

)
dt

=

∫ 1

0

{∫
B

[
− tσij u(i,j) ui − fiui +

(
σij(tε)− tσij

)
εij+(

tu(i,j) − tεij

)
σij

]
dV +

∫
S1

[
t
(

ui − ui

)
σij + tσijui

]
nj dS−∫

S2

ti ui dS
}

dt

(4)
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STEP 4:HWD FUNCTIONAL

I Integrate (4) to find

J(u, ε, σ) =
∫

B

[
W(ε)− fiui + σij(ui,j − εij)

]
dV

−
∫

S1

σijnj (ui − ui) dS−
∫

S2

ti uidS

(5)

(6)

I This is the general functional in elasticity
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STEP 4: DOES THE FUNCTIONAL MAKE SENSE?

I We have found this functional but what does it mean or is
it really right?

I Remember

J(u) =
∫

B
F(x,u,∇u)−

∫
S2

φ(x,u)ds

I Hence

F(u, ε, σ) = W(ε)− fiui + σij(ui,j − εij)

φ = tiui on S2

φ = σijnj (ui − ui) on S1
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STEP 4: DOES THE FUNCTIONAL MAKE SENSE?(2)

I Now let’s apply Euler’s equations. Remember

∂F
∂ui
−
(
∂F
∂ui,j

)
,j
= 0 in B

∂F
∂ui,j

· nj =
∂φ

∂ui
on S2



FUNCTIONALS HWD FUNCTIONAL

STEP 4: DOES THE FUNCTIONAL MAKE SENSE?(3)
I In B

I
∂F
∂ui
−
(
∂F
∂ui,j

)
,j
→ fi − σij,j = 0 Equilibrium

I

∂F
∂εij
−
(
∂F
∂εi,j

)
,j
→ ∂W

∂εij
− σij = 0 Constitutive law

I
∂F
∂σij
−
(
∂F
∂σi,j

)
,j
→ ui,j − εij = 0 Compatability

I On S2
I

∂F
∂ui,j

· nj =
∂φ

∂ui
→ σijnj = ti stress-traction
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STEP 4: DOES THE FUNCTIONAL MAKE SENSE?(4)

I On S1

σijnj (ui − ui) = 0→ ui = ui Displacement Boundary

I So we have recovered all the basic equations of elasticity
and we are convinced that the HWD functional is
right.

I Now let’s see a bit of the history and where this can be
applied.
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HISTORY OF THE FUNCTIONAL

I Two independent publications appeared simultaneously
on March 1955(Hu and Washizu).

I De Veubeke:
There is a functional that generates all the equations of
linear elasticity theory in the form of variational
derivatives and natural boundary conditions. Its
original construction [here he refers to the 1951 report]
followed the method proposed by Friedrichs ..

I Hence I have used the name Hu-Washizu-De Veubeke
functional.



FUNCTIONALS HWD FUNCTIONAL

HISTORY OF THE FUNCTIONAL

I Two independent publications appeared simultaneously
on March 1955(Hu and Washizu).

I De Veubeke:
There is a functional that generates all the equations of
linear elasticity theory in the form of variational
derivatives and natural boundary conditions. Its
original construction [here he refers to the 1951 report]
followed the method proposed by Friedrichs ..

I Hence I have used the name Hu-Washizu-De Veubeke
functional.



FUNCTIONALS HWD FUNCTIONAL

HISTORY OF THE FUNCTIONAL

I Two independent publications appeared simultaneously
on March 1955(Hu and Washizu).

I De Veubeke:
There is a functional that generates all the equations of
linear elasticity theory in the form of variational
derivatives and natural boundary conditions. Its
original construction [here he refers to the 1951 report]
followed the method proposed by Friedrichs ..

I Hence I have used the name Hu-Washizu-De Veubeke
functional.



FUNCTIONALS HWD FUNCTIONAL

APPLICATIONS//LOCKING PROBLEM

Figure: σ11, ν = 0.3
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APPLICATIONS//LOCKING PROBLEM 2

Figure: σ33, ν = 0.3
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Figure: σ11, ν = 0.4999
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APPLICATIONS//LOCKING PROBLEM

Figure: σ33, ν = 0.49999
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LOCKING PROBLEM 2

I Starting from the HWD functional, one can formulate a
three-field(most general) or two field functional
approximations in finite elements. These are called mixed
methods and solve the locking problem for incompressible
materials.

I In principle, one could go high order and solve these but it
comes at a price of computational complexity.



FUNCTIONALS HWD FUNCTIONAL

LOCKING PROBLEM 2

I Starting from the HWD functional, one can formulate a
three-field(most general) or two field functional
approximations in finite elements. These are called mixed
methods and solve the locking problem for incompressible
materials.

I In principle, one could go high order and solve these but it
comes at a price of computational complexity.



FUNCTIONALS HWD FUNCTIONAL

CONCLUSION

I This approach we took is not limited to elasticity and it
shouldn’t be. The mathematics can be applied to a lot of
other areas.
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