Hu -Washizu-Debeveque functional

Abiy Tasissa

December 4, 2012

Outline

- Functional
- Euler's equation
- Vainberg's Theorem
- HWD functional
- Applications

The problem of Single Variable Calculus

- Consider a function $f: R \rightarrow R$. We want to find the critical points.

The problem of Single Variable Calculus

- Consider a function $f: R \rightarrow R$. We want to find the critical points.
- Compute f^{\prime} and solve $f^{\prime}=0$

The problem of Single Variable Calculus

- Consider a function $f: R \rightarrow R$. We want to find the critical points.
- Compute f^{\prime} and solve $f^{\prime}=0$
- Some problems in physics are minimization problems(minimum energy).

The problem of Single Variable Calculus

- Consider a function $f: R \rightarrow R$. We want to find the critical points.
- Compute f^{\prime} and solve $f^{\prime}=0$
- Some problems in physics are minimization problems(minimum energy).
- We want to extend this notion but before doing so we need to understand functionals.

Introduction to Functionals

A functional is a mapping from a space of functions to a real number $f: F \rightarrow R$. What does this mean? Here are some examples.

Calculus of Variations Examples(1)

- Consider a set of curves on a plane. The length of the curve is a functional.

Calculus of Variations Examples(1)

- Consider a set of curves on a plane. The length of the curve is a functional.
- Consider all possible paths joining two given points A and B. Consider a particle that moves along these paths. The time the particle takes to traverse the path is a functional.(Fermat's principle, Brachistochrone problem)

Calculus of Variations Examples(1)

- Consider a set of curves on a plane. The length of the curve is a functional.
- Consider all possible paths joining two given points A and B. Consider a particle that moves along these paths. The time the particle takes to traverse the path is a functional.(Fermat's principle, Brachistochrone problem)
- Let $I=\int_{a}^{b} f(x) d x$. Then for well defined functions f, I is a functional.

CAN WE DO CALCULUS ON FUNCTIONALS?

- Yes! but we have to extend the notion of derivatives as applied to functions(not points anymore).

CAN WE DO CALCULUS ON FUNCTIONALS?

- Yes! but we have to extend the notion of derivatives as applied to functions(not points anymore).
- This takes us into an area of mathematics called calculus of variations(functional analysis).

CAN WE DO CALCULUS ON FUNCTIONALS?

- Yes! but we have to extend the notion of derivatives as applied to functions(not points anymore).
- This takes us into an area of mathematics called calculus of variations(functional analysis).
- The most important result in this area is due to Euler(1707-1783).

First variation of a functional

- J stationary at u requires

$$
\left.\frac{d J(u+\epsilon \eta)}{d \epsilon}\right|_{\epsilon=0}=0=\underbrace{\langle D J(u), \eta\rangle}=0
$$

for all admissible η

EULER'S EQUATION

- Let $F(x, y, z)$ be a C^{2} function. Let us consider all the functions $y(x)$ which are continuously differentiable for $a \leq x \leq b$ and satisfy the boundary conditions

$$
y(a)=A, y(b)=B
$$

EULER'S EQUATION

- Let $F(x, y, z)$ be a C^{2} function. Let us consider all the functions $y(x)$ which are continuously differentiable for $a \leq x \leq b$ and satisfy the boundary conditions

$$
y(a)=A, y(b)=B
$$

- We want to find the functional for which the functional

$$
J[y]=\int_{a}^{b} F\left(x, y, y^{\prime}\right) d x
$$

has an extremum.

EULER'S EQUATION

- Let $F(x, y, z)$ be a C^{2} function. Let us consider all the functions $y(x)$ which are continuously differentiable for $a \leq x \leq b$ and satisfy the boundary conditions

$$
y(a)=A, y(b)=B
$$

- We want to find the functional for which the functional

$$
J[y]=\int_{a}^{b} F\left(x, y, y^{\prime}\right) d x
$$

has an extremum.

- Euler showed that such a functional has to satisfy

$$
F_{y}-\frac{d}{d x} F_{y^{\prime}}=0
$$

Euler's equation Application

- Example: $J[y]=\int_{a}^{b} \sqrt{1+\left[y^{\prime}(x)\right]^{2}} d x$

Euler's equation Application

- Example: $J[y]=\int_{a}^{b} \sqrt{1+\left[y^{\prime}(x)\right]^{2}} d x$
- Apply Euler's equation:

$$
\begin{aligned}
& \frac{\partial F}{\partial y}-\frac{d}{d x} \frac{\partial F}{\partial y^{\prime}}=0 \\
& 0-\frac{d}{d x} \frac{y^{\prime}(x)}{\sqrt{1+\left[y^{\prime}(x)\right]^{2}}}=0 \\
& y^{\prime}(x)=\sqrt{\frac{c^{2}}{1-c^{2}}}
\end{aligned}
$$

Euler's equation Application

- Example: $J[y]=\int_{a}^{b} \sqrt{1+\left[y^{\prime}(x)\right]^{2}} d x$
- Apply Euler's equation:

$$
\begin{aligned}
& \frac{\partial F}{\partial y}-\frac{d}{d x} \frac{\partial F}{\partial y^{\prime}}=0 \\
& 0-\frac{d}{d x} \frac{y^{\prime}(x)}{\sqrt{1+\left[y^{\prime}(x)\right]^{2}}}=0 \\
& y^{\prime}(x)=\sqrt{\frac{c^{2}}{1-c^{2}}}
\end{aligned}
$$

- Hence it is a straight line as desired. (To find explicitly apply boundary conditions).

EULER's EQUATION EXTENDED

$$
J(u)=\int_{B} F(x, u, \nabla u)-\int_{S_{2}} \phi(x, u) d s
$$

The Euler equations are then given by:

$$
\begin{aligned}
\frac{\partial F}{\partial u_{i}}-\left(\frac{\partial F}{\partial u_{i, j}}\right)_{, j} & =0 \text { in } \mathrm{B} \\
\frac{\partial F}{\partial u_{i, j}} \cdot n_{j} & =\frac{\partial \phi}{\partial u_{i}} \text { on } S_{2}
\end{aligned}
$$

VAINBERG'S THEOREM(1)

- Given a functional, we have established that Euler's equations are sufficient conditions for extremum.

VAINBERG'S THEOREM(1)

- Given a functional, we have established that Euler's equations are sufficient conditions for extremum.
- That is let

$$
\begin{aligned}
\underbrace{\langle D J(u), \eta\rangle}_{G(u, \eta)} & =0
\end{aligned}
$$

When is $G(u, \eta)$ the first variation of a functional $J(u, \eta)$?

VAINBERG'S THEOREM(2)

- We apply Vainberg's reciprocity theorem. There is a functional $J(u)$ such that $\langle D J(u), \eta\rangle=G(u, \eta)$ iff

$$
\langle D G(u, \eta), \xi\rangle=\langle D G(u, \xi), \eta\rangle
$$

VAINBERG'S THEOREM(2)

- We apply Vainberg's reciprocity theorem. There is a functional $J(u)$ such that $\langle D J(u), \eta\rangle=G(u, \eta)$ iff

$$
\langle D G(u, \eta), \xi\rangle=\langle D G(u, \xi), \eta\rangle
$$

- If the condition is satisified

$$
J(u)=\int_{0}^{1} G(t u, u) d t
$$

The EqUAtions of Linear Elasticity

$$
\begin{aligned}
\sigma_{i j, j}+f_{i}=0 & \text { in } B \\
\sigma_{i j} n_{j}=t_{i} & \text { on } S_{2} \\
\epsilon_{i j}=u_{(i, j)} & \text { in } B \\
u_{i}=\bar{u}_{i} & \text { on } S_{1} \\
\sigma_{i j}\left(\epsilon_{i j}\right)=\frac{\partial W}{\partial \epsilon_{i j}} & \text { in } B
\end{aligned}
$$

Step 1: Integral Form (1)

- Weighted average sense. Corresponding to u, σ and ϵ, let the virtual parameters be η, α and β respectively.(This is quite the same step we took when we derived the principle of virtual work except now it is a three field formulation).

STEP 1: Integral Form (1)

- Weighted average sense. Corresponding to u, σ and ϵ, let the virtual parameters be η, α and β respectively.(This is quite the same step we took when we derived the principle of virtual work except now it is a three field formulation).
- $G((u, \epsilon, \sigma),(\eta, \alpha, \beta))=$

$$
\begin{align*}
& \int_{B}\left[\left(-\sigma_{i j, j}+f_{i}\right) \eta_{i}+\left(\sigma_{i j}(\epsilon)-\frac{\partial W}{\partial \epsilon_{i j}}\right) \alpha_{i j}+\left(u(i, j)-\epsilon_{i j}\right) \beta_{i j}\right] d v+ \\
& \int_{S_{2}}\left(\sigma_{i j} \eta_{j}-t_{i}\right) \eta_{i} d S+\int_{S_{1}}\left(\overline{u_{i}}-u_{i}\right) \beta_{i j} \eta_{j} d S=0 \tag{1}
\end{align*}
$$

STEP 1: Integral Form (1)

- Weighted average sense. Corresponding to u, σ and ϵ, let the virtual parameters be η, α and β respectively.(This is quite the same step we took when we derived the principle of virtual work except now it is a three field formulation).
- $G((u, \epsilon, \sigma),(\eta, \alpha, \beta))=$

$$
\begin{align*}
& \int_{B}\left[\left(-\sigma_{i j, j}+f_{i}\right) \eta_{i}+\left(\sigma_{i j}(\epsilon)-\frac{\partial W}{\partial \epsilon_{i j}}\right) \alpha_{i j}+\left(u(i, j)-\epsilon_{i j}\right) \beta_{i j}\right] d v+ \\
& \int_{S_{2}}\left(\sigma_{i j} \eta_{j}-t_{i}\right) \eta_{i} d S+\int_{S_{1}}\left(\overline{u_{i}}-u_{i}\right) \beta_{i j} \eta_{j} d S=0 \tag{1}
\end{align*}
$$

- Note that each term represents work done by the virtual field.

Step 1: Integral Form (2)

- To simplify this, we use the following mathematical relationship:

$$
\int \sigma_{i, j, j} \eta_{i} d v=\int \operatorname{div}\left(\eta_{i} \sigma_{i j}\right) d V-\int \eta_{i, j} \sigma_{i j} d V
$$

Apply divergence theorem

$$
\sigma_{i, j} \eta_{i} d V=\int_{S_{1}+S_{2}}\left(\sigma_{i j} \eta_{i}\right) n_{j} d S-\int \eta_{i, j} \sigma_{i j} d V
$$

STEP 1: Integral Form (2)

- To simplify this, we use the following mathematical relationship:

$$
\int \sigma_{i j, j} \eta_{i} d v=\int \operatorname{div}\left(\eta_{i} \sigma_{i j}\right) d V-\int \eta_{i, j} \sigma_{i j} d V
$$

Apply divergence theorem

$$
\sigma_{i, j} \eta_{i} d V=\int_{S_{1}+S_{2}}\left(\sigma_{i j} \eta_{i}\right) n_{j} d S-\int \eta_{i, j} \sigma_{i j} d V
$$

- So we can rewrite (1) as $G((u, \epsilon, \sigma),(\eta, \alpha, \beta))=$

$$
\begin{aligned}
& \int_{B}\left[-\sigma_{i j} \eta_{i, j} \eta_{i}-f_{i} \eta_{i}+\left(\sigma_{i j}(\epsilon)-\sigma_{i j}\right) \alpha_{i j}+\left(u(i, j)-\epsilon_{i j}\right) \beta_{i j}\right] d v+ \\
& +\int_{S_{1}}\left[\left(u_{i}-\bar{u}_{i}\right) \beta_{i j}+\sigma_{i j} \eta_{i}\right] n_{j} d S-\int_{S_{2}} \bar{t}_{i} \eta_{i} d S=0
\end{aligned}
$$

Step 2: Check Reciprocity

- Now we ask if the expression (2) can be derived from a functional. For that, we need to check the reciprocity condition.

$$
\begin{align*}
& \left\langle D G((u, \epsilon, \sigma),(\eta, \alpha, \beta)),\left(\eta^{\prime}, \alpha^{\prime}, \beta^{\prime}\right)\right\rangle= \\
& \left\langle D G\left((u, \epsilon, \sigma),\left(\eta^{\prime}, \alpha^{\prime}, \beta^{\prime}\right)\right),(\eta, \alpha, \beta)\right\rangle \tag{3}
\end{align*}
$$

This can be shown to be true.

Step 3: Apply Vainberg to find functional

- Now we are ready to compute our functional $J(u, \epsilon, \sigma)$ using Vainberg's recipe.

Step 3: Apply Vainberg to find functional

- Now we are ready to compute our functional $J(u, \epsilon, \sigma)$ using Vainberg's recipe.
- $J(u, \epsilon, \sigma)=$

$$
\begin{align*}
& \int_{0}^{1} G((t u, t \epsilon, t \sigma),(u, \epsilon, \sigma)) d t \\
& =\int_{0}^{1}\left\{\int _ { B } \left[-t \sigma_{i j} u_{(i, j)} u_{i}-f_{i} u_{i}+\left(\sigma_{i j}(t \epsilon)-t \sigma_{i j}\right) \epsilon_{i j}+\right.\right. \\
& \left.\left(t u_{(i, j)}-t \epsilon_{i j}\right) \sigma_{i j}\right] d V+\int_{S_{1}}\left[t\left(u_{i}-\overline{u_{i}}\right) \sigma_{i j}+t \sigma_{i j} u_{i}\right] n_{j} d S- \\
& \left.\int_{S_{2}} \bar{t}_{i} u_{i} d S\right\} d t \tag{4}
\end{align*}
$$

STEP 4:HWD FUNCTIONAL

- Integrate (4) to find

$$
\begin{align*}
& J(u, \epsilon, \sigma)=\int_{B}\left[W(\epsilon)-f_{i} u_{i}+\sigma_{i j}\left(u_{i, j}-\epsilon_{i j}\right)\right] d V \tag{5}\\
& -\int_{S_{1}} \sigma_{i j} n_{j}\left(u_{i}-\bar{u}_{i}\right) d S-\int_{S_{2}} \bar{t}_{i} u_{i} d S \tag{6}
\end{align*}
$$

STEP 4:HWD FUNCTIONAL

- Integrate (4) to find

$$
\begin{align*}
& J(u, \epsilon, \sigma)=\int_{B}\left[W(\epsilon)-f_{i} u_{i}+\sigma_{i j}\left(u_{i, j}-\epsilon_{i j}\right)\right] d V \tag{5}\\
& -\int_{S_{1}} \sigma_{i j} n_{j}\left(u_{i}-\bar{u}_{i}\right) d S-\int_{S_{2}} \bar{t}_{i} u_{i} d S \tag{6}
\end{align*}
$$

- This is the general functional in elasticity

Step 4: DOES THE FUNCTIONAL MAKE SENSE?

- We have found this functional but what does it mean or is it really right?

STEP 4: DOES THE FUNCTIONAL MAKE SENSE?

- We have found this functional but what does it mean or is it really right?
- Remember

$$
J(u)=\int_{B} F(x, u, \nabla u)-\int_{S_{2}} \phi(x, u) d s
$$

- Hence

$$
\begin{aligned}
F(u, \epsilon, \sigma) & =W(\epsilon)-f_{i} u_{i}+\sigma_{i j}\left(u_{i, j}-\epsilon_{i j}\right) \\
\phi & =\bar{t}_{i} u_{i} \text { on } S_{2} \\
\phi & =\sigma_{i j} n_{j}\left(u_{i}-\overline{u_{i}}\right) \text { on } S_{1}
\end{aligned}
$$

Step 4: DOES THE FUNCTIONAL MAKE SENSE?(2)

- Now let's apply Euler's equations. Remember

$$
\begin{aligned}
\frac{\partial F}{\partial u_{i}}-\left(\frac{\partial F}{\partial u_{i, j}}\right)_{, j} & =0 \text { in B } \\
\frac{\partial F}{\partial u_{i, j}} \cdot n_{j} & =\frac{\partial \phi}{\partial u_{i}} \text { on } S_{2}
\end{aligned}
$$

Step 4: DOES THE FUNCTIONAL MAKE SENSE?(3)

- In B

Step 4: DOES THE FUNCTIONAL MAKE SENSE?(3)

- In B

$$
\frac{\partial F}{\partial u_{i}}-\left(\frac{\partial F}{\partial u_{i, j}}\right)_{, j} \rightarrow f_{i}-\sigma_{i j, j}=0 \text { Equilibrium }
$$

Step 4: DOES THE FUNCTIONAL MAKE SENSE?(3)

- In B

$$
\begin{gathered}
\frac{\partial F}{\partial u_{i}}-\left(\frac{\partial F}{\partial u_{i, j}}\right)_{, j} \rightarrow f_{i}-\sigma_{i j, j}=0 \text { Equilibrium } \\
\frac{\partial F}{\partial \epsilon_{i j}}-\left(\frac{\partial F}{\partial \epsilon_{i, j}}\right)_{, j} \rightarrow \frac{\partial W}{\partial \epsilon_{i j}}-\sigma_{i j}=0 \text { Constitutive law }
\end{gathered}
$$

Step 4: DOES THE FUNCTIONAL MAKE SENSE?(3)

- In B

$$
\begin{gathered}
\frac{\partial F}{\partial u_{i}}-\left(\frac{\partial F}{\partial u_{i, j}}\right)_{, j} \rightarrow f_{i}-\sigma_{i j, j}=0 \text { Equilibrium } \\
\frac{\partial F}{\partial \epsilon_{i j}}-\left(\frac{\partial F}{\partial \epsilon_{i, j}}\right)_{, j} \rightarrow \frac{\partial W}{\partial \epsilon_{i j}}-\sigma_{i j}=0 \text { Constitutive law } \\
\frac{\partial F}{\partial \sigma_{i j}}-\left(\frac{\partial F}{\partial \sigma_{i, j}}\right)_{, j} \rightarrow u_{i, j}-\epsilon_{i j}=0 \text { Compatability }
\end{gathered}
$$

Step 4: DOES THE FUNCTIONAL MAKE SENSE?(3)

- In B

$$
\begin{gathered}
\frac{\partial F}{\partial u_{i}}-\left(\frac{\partial F}{\partial u_{i, j}}\right)_{, j} \rightarrow f_{i}-\sigma_{i j, j}=0 \text { Equilibrium } \\
\frac{\partial F}{\partial \epsilon_{i j}}-\left(\frac{\partial F}{\partial \epsilon_{i, j}}\right)_{, j} \rightarrow \frac{\partial W}{\partial \epsilon_{i j}}-\sigma_{i j}=0 \text { Constitutive law } \\
\frac{\partial F}{\partial \sigma_{i j}}-\left(\frac{\partial F}{\partial \sigma_{i, j}}\right)_{, j} \rightarrow u_{i, j}-\epsilon_{i j}=0 \text { Compatability }
\end{gathered}
$$

- $\operatorname{On} S_{2}$

Step 4: Does the functional make sense?(3)

- In B

$$
\frac{\partial F}{\partial u_{i}}-\left(\frac{\partial F}{\partial u_{i, j}}\right)_{, j} \rightarrow f_{i}-\sigma_{i, j, j}=0 \text { Equilibrium }
$$

$$
\frac{\partial F}{\partial \epsilon_{i j}}-\left(\frac{\partial F}{\partial \epsilon_{i, j}}\right)_{, j} \rightarrow \frac{\partial W}{\partial \epsilon_{i j}}-\sigma_{i j}=0 \text { Constitutive law }
$$

$$
\frac{\partial F}{\partial \sigma_{i j}}-\left(\frac{\partial F}{\partial \sigma_{i, j}}\right)_{, j} \rightarrow u_{i, j}-\epsilon_{i j}=0 \text { Compatability }
$$

- $\mathrm{On} \mathrm{S}_{2}$

$$
\frac{\partial F}{\partial u_{i, j}} \cdot n_{j}=\frac{\partial \phi}{\partial u_{i}} \rightarrow \sigma_{i j} n_{j}=t_{i} \text { stress-traction }
$$

Step 4: Does the functional make sense? (4)

- On S_{1}

$$
\sigma_{i j} n_{j}\left(u_{i}-\overline{u_{i}}\right)=0 \rightarrow u_{i}=\overline{u_{i}} \text { Displacement Boundary }
$$

Step 4: DOES THE FUNCTIONAL MAKE SENSE?(4)

- On S_{1}

$$
\sigma_{i j} n_{j}\left(u_{i}-\overline{u_{i}}\right)=0 \rightarrow u_{i}=\overline{u_{i}} \text { Displacement Boundary }
$$

- So we have recovered all the basic equations of elasticity and we are convinced that the HWD functional is right.

STEP 4: DOES THE FUNCTIONAL MAKE SENSE?(4)

- On S_{1}

$$
\sigma_{i j} n_{j}\left(u_{i}-\overline{u_{i}}\right)=0 \rightarrow u_{i}=\overline{u_{i}} \text { Displacement Boundary }
$$

- So we have recovered all the basic equations of elasticity and we are convinced that the HWD functional is right.
- Now let's see a bit of the history and where this can be applied.

History of the functional

- Two independent publications appeared simultaneously on March 1955(Hu and Washizu).

History of the functional

- Two independent publications appeared simultaneously on March 1955(Hu and Washizu).
- De Veubeke:

There is a functional that generates all the equations of linear elasticity theory in the form of variational derivatives and natural boundary conditions. Its original construction [here he refers to the 1951 report] followed the method proposed by Friedrichs ..

History of the functional

- Two independent publications appeared simultaneously on March 1955(Hu and Washizu).
- De Veubeke:

There is a functional that generates all the equations of linear elasticity theory in the form of variational derivatives and natural boundary conditions. Its original construction [here he refers to the 1951 report] followed the method proposed by Friedrichs ..

- Hence I have used the name Hu-Washizu-De Veubeke functional.

Applications/ /LOCKing Problem

stresses 0
$1.96 e+9$
$1.6 e+9$
$1.2 \mathrm{e}+9$
$8 \mathrm{e}+8$
$4 \mathrm{e}+8$
-0
$-3.416 e+7$
$\left.\right|_{z} ^{x} x$

stresses 0 .96 e+9
$1.6 e+9$
$1.2 \mathrm{e}+9$
$8 e+8$
$4 e+8$
$-3.416 e+7$

Figure: $\sigma_{11}, \nu=0.3$

Applications / /Locking Problem 2

stresses 3
$3.153 \mathrm{e}+8$
$2 e+8$
0
$-2 e+8$
$-4 e+8$
$-6 e+8$
$-6.296 e+8$

Figure: $\sigma_{33}, \nu=0.3$

Applications/ /Locking Problem

Figure: $\sigma_{11}, \nu=0.4999$

Applications/ /Locking Problem

Figure: $\sigma_{33}, \nu=0.49999$

LOCKING PROBLEM 2

- Starting from the HWD functional, one can formulate a three-field(most general) or two field functional approximations in finite elements. These are called mixed methods and solve the locking problem for incompressible materials.

Locking Problem 2

- Starting from the HWD functional, one can formulate a three-field(most general) or two field functional approximations in finite elements. These are called mixed methods and solve the locking problem for incompressible materials.
- In principle, one could go high order and solve these but it comes at a price of computational complexity.

CONCLUSION

- This approach we took is not limited to elasticity and it shouldn't be. The mathematics can be applied to a lot of other areas.

REFERENCES

\square Gelfand, Fomin, Calculus of Variations, Prentice-Hall, 1963.Fraeijs de Veubeke, B. M., Variational principles and the patch test Int. J. Numer. Meth. Engrg, 8, 783-801, 1974.

国 Hu, H.-C., On some variational methods on the theory of elasticity and the theory of plasticity Scientia Sinica, 4, 33-54, 1955

REFERENCES

M.M. Vainberg Variational Methods for the Study of Nonlinear Operators, Holden-day, 1964.Washizu, K., On the variational principles of elasticity and plasticity, Aeroelastic and Structures Research Laboratory, Technical Report 25-18, MIT, Cambridge, 1955.

THANK YOU for your attention!

