Post #4: Future Idea for Treating MS

This week, our group discussed how adapting new science and engineering principles/research could take MS treatment/prevention to the next level; we came up with ideas on how current engineering principles could be adapted to change the outlook of MS for individuals. Currently, our idea is to take a multi-targeted approach to treating MS; this includes a variety of different concepts at different stages of the disease that could overall be combined and individualized for each person with MS. Each group member has one of our ideas, and we plan on combining these ideas to make a comprehensive plan for the future of MS research.

One of these ideas is to interface neurons with technology in order to replace or bypass the damaged neurons that come about in the disease progression of MS. The concept of interfacing/combining technology with the body is a growing source of research in the biomedical engineering field, and there have been many advancements for how technology could be adapted to be compatible with the body. However, there has been limited to no research as to how technology could be used to either interface with the nervous system (outside of the brain) or even through creating artificial technological neurons themselves.

This would be effective because MS damages/destroys neurons, and sometimes once the disease progresses to a certain point, even with new processes to repair the myelin sheaths it may not be enough to allow a person to become just as they were before getting MS. This is because once a certain level of damage is done, the damage can become unrepairable. However, if a way to replace or interface these neurons with technology were to be developed, then rather than trying to repair damage, a person could just be given new artificial neurons that could allow their nervous system to work in a manner that would not be hindered by past demyelination. This makes this idea better than the engineering principles already established, as it gives the body a new system rather than trying to fix a damaged one.

This could be done by finding a technology that can communicate just like neurons, and then integrating this technology with the body using biocompatible materials that would allow the body to use the new technology without rejecting it. This is a very complicated problem, as neurons are extremely delicate and would be extremely difficult to interface technology with. However, the possibility of adapting the same technology that allows artificial limbs to be connected to and controlled by neurons could be used in this situation, and this could be a promising avenue to investigate. However, the difficulty here would be the fact that this idea would be leading from neurons to neurons/the brain, not from neurons to artificial technology. This difference makes the process more complicated, but many of the same principles can likely be adapted to make the idea plausible.

Overall, this idea is a promising avenue to investigate, and while much more research is needed to figure out materials/interfacing issues this could be a very plausible and effective approach to treating advanced MS. While there are a few gaps in knowledge outlined above, these can likely be overcome by adapting past principles to new situations.

Leave a Reply