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Abstract

As human–machine teams are being considered for a variety of mixed-initiative tasks, detecting
and being responsive to human cognitive states, in particular systematic cognitive states, is among the
most critical capabilities for artificial systems to ensure smooth interactions with humans and high
overall team performance. Various human physiological parameters, such as heart rate, respiration
rate, blood pressure, and skin conductance, as well as brain activity inferred from functional near-
infrared spectroscopy or electroencephalogram, have been linked to different systemic cognitive states,
such as workload, distraction, or mind–wandering among others. Whether these multimodal signals
are indeed sufficient to isolate such cognitive states across individuals performing tasks or whether
additional contextual information (e.g., about the task state or the task environment) is required for
making appropriate inferences remains an important open problem.

In this paper, we introduce an experimental and machine learning framework for investigating these
questions and focus specifically on using physiological and neurophysiological measurements to learn
classifiers associated with systemic cognitive states like cognitive load, distraction, sense of urgency,
mind wandering, and interference. Specifically, we describe a multitasking interactive experimental
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setting used to obtain a comprehensive multimodal data set which provided the foundation for a first
evaluation of various standard state-of-the-art machine learning techniques with respect to their effec-
tiveness in inferring systemic cognitive states. While the classification success of these standard meth-
ods based on just the physiological and neurophysiological signals across subjects was modest, which
is to be expected given the complexity of the classification problem and the possibility that higher
accuracy rates might not in general be achievable, the results nevertheless can serve as a baseline for
evaluating future efforts to improve classification, especially methods that take contextual aspects such
as task and environmental states into account.

Keywords: Physiological and brain sensing; Classifying cognitive states; Cognitive state inferences;
Domain generalization; Machine learning

1. Introduction

Recent advances in robotics and autonomous systems point to a future where humans and
machines will jointly perform tasks, ranging from collaborative manufacturing with industrial
co-robots, to the many harvesting scenarios in agriculture, search and rescue operations after
natural disasters, deep space missions, and many more. Imagine a joint ground-air search and
rescue mission in an urban environment after an earthquake where a team of first respon-
ders is tasked to conduct a search for wounded people in collapsed buildings. The mission
is supported by an autonomous system S consisting of various networked unmanned ground
vehicles (UGVs) and unmanned air vehicles (UAVs) that can monitor a variety of important
systemic cognitive states of their human team members in real-time while performing their
own assigned tasks (e.g., see Scheutz, DeLoach, & Adams, 2017 for the description of a com-
putational framework). As two human searchers are trying to deploy communication devices
with the help of UGVs, first their sense of urgency and subsequently their cognitive workload
are both increasing as the process turns out to be more complicated and takes longer than
expected, while the third member’s vigilance is dropping as she is watching out for inclement
weather activity. The search leader, in the meantime, is becoming increasingly distracted due
to difficulties with her communication device. S notices a lack of team cohesion due to cog-
nitive state changes in the individuals and takes immediate action. First, S tasks two UAVs
to explore the areas down the road, knowing that this task will have to be done next. S then
tasks the closest UGV to provide a verbal update on the UAV mission to the mind wandering
team member, quickly restoring vigilance and alertness, and proposes that the member helps
the two other struggling teammates, which lowers their workload and prevents urgency from
increasing further. As the UAVs report additional areas with potentially trapped human sur-
vivors to the southeast and northwest, S relays that information to the search leader through
the closest UGV, which subsequently refocuses the leader’s attention on the areas still to
be searched.

The autonomous system S in the above scenario was able to intervene and proactively
support the team by being aware of human cognitive states (indicated in italics) and then
using its explicit task knowledge (e.g., the need to perform surveillance operations) to make
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autonomous decisions to act in the interest of task goals and interact with humans to improve
team coherence. One way in which S could obtain the necessary information about its team-
mates’ systemic cognitive states is through monitoring their physiological signals which often
carry important information about human performance and possibly workload or interference.
Understanding the extent to which such systemic cognitive states can be inferred from a mix-
ture of physiological and neurophysiological signals is thus of great interest for understand-
ing the different effects these states can have on human task performance and thus also on
team effectiveness. Moreover, being able to detect such cognitive states, in particular, ones
that lower performance, can form the basis of interventions to mitigate states that lower and
move toward states that improve task performance (e.g., refocusing attention after distraction,
removing lower priority tasks to reduce workload, engaging with regular activities to prevent
mind wandering, etc.).

While there has been increasing interest in developing experimental paradigms to develop
multimodal data sets which can form the basis for developing detection algorithms (e.g.,
learning appropriate classifiers), there is currently no available multimodal data set that com-
prises a comprehensive set of physiological (e.g., heart and respiration rate, arterial satu-
ration and blood pressure, skin conductance) and neurophysiological data (e.g., functional
near-infrared spectroscopy (fNIRS), electroencephalogram (EEG), and eye gaze) paired with
behavioral measures (e.g., communication events, as well as task-based actions, such as brak-
ing in a driving task or performing detection response tasks). Yet, such a comprehensive data
set is needed for developing a comprehensive understanding of which combination of signals
(if any) can be used for developing (reasonably) accurate inference methods of various sys-
temic cognitive states. While we would not expect there to be a perfect alignment with any
subset of signals and systemic cognitive states, the verdict is still out on whether there exists
a sufficiently systematic correlation between the measured signals and systemic cognitive
states that can be utilized by machine learning methods to develop corresponding classifiers
that work across individuals.

The goal of this paper is thus two-fold: (1) We present data from an experimental paradigm
aimed specifically at developing a comprehensive multi-modal data set for studying system-
atic cognitive states; and (2) we use the data set for a first evaluation of standard machine
learning methods using various types of physiological signals, including fNIRS, EEG, and
eye gaze (pupil diameter) to determine the extent to which they are able to make reasonably
accurate inferences about human cognitive states from a subset of the multimodal signals
across subjects. Note that while traditionally machine learning methods train and test the
learned model on data from the same individual, we are tackling the more challenging setting
where a model is trained on several participants but needs to generalize to new individu-
als which we addressed by applying an advanced technique called domain generalization to
improve the generalization capability of the learned models. The results of these efforts not
only demonstrate the potential and limitations of domain generalization methods, but more
importantly can serve as a baseline for future methods that include additional constraining
factors such as task context and observable events in the task environment to push the classi-
fication accuracy to what can be achieved at best without additional individual adaptations of
the models.
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Table 1
Examples of prior work using five sensing modalities to measure any of the five cognitive states we are investigat-
ing.

Cognitive state fNIRS EEG Card.v. Skin c. Eye gaze

Cognitive load Causse, Chua,
Peysakhovich,
Del Campo, and
Matton (2017)

Berka et al.
(2007)

Stuiver and Mulder
(2014)

Mehler, Reimer,
Coughlin, and
Dusek (2009)

Palinko, Kun,
Shyrokov,
and Heeman
(2010)

Distraction Ozawa and Hiraki
(2017)

Wang, Jung, and
Lin (2015)

Beckers, Schreiner,
Bertrand,
Mehler, and
Reimer (2017)

Rajendra and
Dehzangi
(2017)

Liang and Lee
(2008)

Sense of urgency Holtzer et al.
(2017)

Cheng (2017) Liu, Lu, Huang,
and Fu (2017b)

Kurniawan,
Maslov, and
Pechenizkiy
(2013)

Liu, Hsieh, Lo,
and Hwang
(2017a)

Mind wandering Durantin, Dehais,
and Delorme
(2015)

Baldwin et al.
(2017)

Keller, Ruthruff,
and Keller
(2017)

Blanchard,
Bixler, Joyce,
and D’Mello
(2014a)

Grandchamp,
Braboszcz,
and Delorme
(2014)

Interference León-Carrion et al.
(2008)

Cooper et al.
(2015)

Canabarro, Garcia,
Satler, and
Tavares (2017)

Collet, Petit,
Priez, and
Dittmar
(2005)

Chatham,
Frank, and
Munakata
(2009)

Abbreviations: Card. v., cardiovascular activity; EEG, electroencephalogram; fNIRS, functional near-infrared
spectroscopy; Skin c., skin conductance.

2. Human cognitive states

It is well-known that various human cognitive states can significantly influence individual
task performance and thus are likely to affect team behavior as well. Among these task-
relevant states are cognitive load (Cooper, Medeiros-Ward, & Strayer, 2013), distraction
(Strayer et al., 2015), sense of urgency (Ordonez & Benson, 1997), mind wandering (Kane
et al., 2007), vigilance (McIntire, McKinley, Goodyear, & Nelson, 2014), and interference
(Appelbaum, Boehler, Davis, Won, & Woldorff, 2014). Various methods have been proposed
in the literature to measure these states (see Table 1), including using complementary brain
sensing techniques involving EEG and fNIRS, which can also be combined to investigate
neurovascular coupling (i.e., the relationship between neuronal activation and associated
blood flow changes Tong et al., 2005; Dutta, Jacob, Chowdhury, Das, & Nitsche, 2015).
While EEG is directly sensitive to neuronal activity, fNIRS is sensitive to hemodynamic
changes associated with brain activity as well as systemic physiological changes. To take
into account potential systemic contributions to the fNIRS signal, it is thus important to
also monitor heart rate, arterial saturation, respiration, and arterial pressure (e.g., Fantini,
Aggarwal, Chen, Franceschini, & Ehrenberg, 2003; Kainerstorfer, Sassaroli, Tgavalekos,
& Fantini, 2015). These systemic measurements serve a dual purpose: first, they can help
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isolate brain-specific components of the fNIRS signal; second, they provide complementary
information on systemic physiological states which can be further enhanced by including eye
gaze and skin conductance information.

There is a large number of prior studies attempting to characterize systemic cognitive states
in terms of multimodal physiological signals. Here, we can only provide a brief excerpt with
respect to the systemic cognitive states we are investigating in this work.

2.1. Cognitive workload

Khedher et al. collected both EEG and human gaze data from 15 students in a virtual learn-
ing environment for the classification of cognitive workload in two distinct groups: students
who could complete the tasks successfully and students who could not (Khedher, Jraidi, &
Frasson, 2019). This study reported k-Nearest Neighbor as the best classifier over other clas-
sification techniques. Another study used the fusion of EEG and fNIRS to assess cognitive
workload by building independent classifiers for each sensor (Coffey, Brouwer, & van Erp,
2012). Then, the classification results were combined to calculate the final decision. However,
the results of the fusion method did not show notable enhancement over just using EEG alone.

2.2. Distraction

Some other studies explored the fusion of different physiological signal modalities in pre-
dicting distraction. Engstrom et al. combined electrocardiogram (ECG), gaze position, and
vehicle measurements, such as lane position and steering wheel, to determine the level of
distraction of the participants (Engström, Johansson, & Östlund, 2005). The results of the
fusion technique indicated better performance over using single physiological modalities in
assessing distraction. Craye et al. introduced a driving simulation environment that includes
multiple sensor modalities to extract different physiological features, such as depth map, heart
rate, steering wheel, and pedal positions. The authors utilized hidden Markov models to fuse
the extracted features along with the contextual information to estimate the driver’s fatigue
and distraction levels. Their results showed an accurate prediction of fatigue and distraction
with the combination of various physiological signal types (Debie et al., 2019).

2.3. Sense of urgency

Relatively, few studies have investigated the effects of the fusion of multiple signal types on
predicting the sense of urgency. In Khalaf et al. (2020), authors recorded various physiologi-
cal signals, such as ECG, continuous blood pressure, respiration, impedance cardiogram, and
facial electromyography (EMG) to assess the participant’s challenge and threat states who
completed three mental arithmetic tasks. Another study used blood volume pressure, galvanic
skin response, and skin temperature to determine the anxiety levels of the participants (Šalke-
vicius, Damaševičius, Maskeliunas, & Laukienė, 2019).
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2.4. Mind wandering

Mind wandering is another cognitive state which has been investigated by leveraging dif-
ferent types of physiological signal modalities to determine. Blanchard et al. combined skin
conductance and skin temperature to assess mind wandering by training different supervised
classification models (Blanchard, Bixler, Joyce, & D’Mello, 2014b). Bixler et al. used the
fusion of eye gaze, skin conductance, and skin temperature along with contextual informa-
tion such as task difficulty and time on task to determine automatic multimodal detection of
mind wandering (Bixler, Blanchard, Garrison, & D’Mello, 2015). Grandchamp et al. exam-
ined the variations in the gaze position, the frequency of blinking, and the pupil size caused
by mind wandering which was generated by a monotonous breathcounting task where the par-
ticipants were asked to fix their eyes to a point, keep counting their breath, and report when
they lose counting (Grandchamp et al., 2014).

2.5. Cognitive interference

There are also a few efforts on assessing cognitive interference based on different phys-
iological biomarkers. Robertson et al. simultaneously recorded EEG and fNIRS during a
multisource interference task. Their results indicate that the combination of EEG and fNIRS
improves the performance of assessing cognitive interference (Robertson, Thomas, Prato,
Johansson, & Nittby, 2014). Nigbur et al. collected EEG and electrooculogram to investigate
the influence of EEG theta activity on multiple sources of cognitive interference. Their results
demonstrated the sensitivity of the theta power to the recruitment of executive control in inter-
ference circumstances (Nigbur, Ivanova, & Stürmer, 2011). In González-Villar, Samartin-
Veiga, Arias, and Carrillo-de-la Pe na (2017), authors calculated the slope of the power
spectrum density (PSD) taken from EEG and considered it as an indicator of neural noise
and investigated the variations in neural noise during cognitive interference in fibromyalgia
patients. Their results demonstrated that neural noise increases during cognitive interference.

2.6. Experimental conditions for inducing five systemtic cognitive states

In order to assess which combinations of physiological and brain measures are best suited
for cognitive state inferences and, for future work, which context-based aspects might be
needed for accurate classifications, we developed an experimental paradigm that allowed us
to instantiate different systemic cognitive states naturally as part of a driving task and collect
a comprehensive multimodal data set that could be used to train machine learning models to
classify these states. The experimental task thus needed to allow for the instrumentation of
participants with a full suite of physiological and brain sensors (see Fig. 1) without having
too much of an impact on their task performance. Moreover, the tasks needed to allow for
controlled variations to induce cognitive load, distraction, sense of urgency, mind wandering,
and interference. We settled on a seated driving task in a driving simulator where partici-
pants only needed to use their right hand for steering and their right foot for operating the
gas and brake pedals. There was minimal head motion involved and we were able to reduce
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Fig. 1. Schematic of the experimental setup for the collection of various physiological signals during the driving
simulator protocol, including functional near-infrared spectroscopy (fNIRS) and electroencephalogram (EEG).

motion artifacts in EEG and fNIRS. During driving, participants had to respond to various
environmental situations, such as avoiding crashing into a braking automobile, or situations
that restricted participants’ reactions (e.g., being surrounded by cars while traveling under an
overpass). In addition to varying the amount of traffic or the need for braking to increase or
decrease the task difficulty, we added two secondary tasks in some experimental conditions
that participants had to perform during driving while avoiding accidents. The first was the tac-
tile detection response task (DRT) for Standardization Road Vehicles—Transport Information
and Systems (2016) task which participants had to perform continuously. This is a validated
method for assessing cognitive workload while driving if used right (see also Stojmenova
& Sodnik, 2018). The second was a communication task where drivers had to respond to
different types of questions.

Our motivation for choosing this particular combination of tasks was based on considera-
tions of ecological validity. The situation in which someone is driving while traffic conditions
may require braking, and a conversation with a passenger takes place simultaneously is one
that occurs frequently in real life. The DRT task roughly corresponds with the driver wearing
a smartwatch that vibrates when someone calls them, and that the driver subsequently has
to cancel.

The multitask setting then allows for the definition of specific conditions that participants
encountered periodically throughout the experiment and which would best induce the five
cognitive states we discussed in Table 2: cognitive load, distraction, urgency, mind wander-
ing, and interference.

 17568765, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/tops.12669 by T

ufts U
niversity, W

iley O
nline L

ibrary on [12/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



8 M. Scheutz et al. / Topics in Cognitive Science 00 (2023)

Table 2
Experimental conditions for inducing five systemic cognitive states

Cognitive state Events or conditions

Cognitive load DRT, braking, communication
Distraction DRT, car proximity, on-ramp areas
Sense of urgency communication, car proximity
Mind wandering baseline
Interference DRT, brake pedal

Abbreviation: DRT, detection response task.

2.6.1. Cognitive load
Cognitive load is expected to increase with increasing task demands over a longer period of

time, that is, when there is not only the visual driving task but also the tactile perception of the
DRT as well as the auditory awareness and engagement of answering the questions. High cog-
nitive load during the experiment is expected when participants have regular communication
events paired with sudden braking events while also performing the DRT.

2.6.2. Distraction
Distractions are events or tasks that interrupt the continuity of driving performance and

require instantaneous adaptation and reaction to a changed driving environment. Distraction
episodes are defined as periods of time where peripheral task demands such as the DRT could
interrupt the focus or attention of the participant (e.g., during a braking event).

2.6.3. Sense of urgency
The operational definition of urgency is when there are environmental objects and task

demands that insist on a timely manner of reaction such as when one needs to answer a ques-
tion (performing a communication task) quickly or sudden changes to the driving environment
that require immediate braking.

2.6.4. Mind wandering
During the first 3 minutes of the experiment, peripheral traffic and road conditions were

at a minimal level and no task demand arises (i.e., no communications, no braking required,
and no DRT) other than driving in the right lane on a straight highway. This portion of the
experiment was used as an introduction to the experiment and used to extract a baseline
measurement of task performance. This time period of the experiment was also defined as a
period that would evoke the mind wandering mental condition.

2.6.5. Interference
These are cognitive resource interferences which could affect the performance of the

participant, for example, having to perform a physical brake action to avoid a collision
while also having to perform another independent physical action to respond to the DRT
simultaneously.
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Note that the above systemic cognitive states can overlap as the same external event (e.g.,
braking event) can contribute to multiple different systemic states (e.g., sense of urgency,
distraction, and interference). Moreover, whether the external events (i.e., the experimen-
tal manipulations) actually cause a particular systemic cognitive state also depends on the
individual, how they allocate cognitive resources, and how well they are able to cope with
the task demands. For example, whether a DRT event causes distraction will depend on
an individual’s focus of attention and ability to multitask. Similarly, whether a braking
event causes interference with the DRT will depend on the individual’s ability to focus on
and perform simultaneous physical tasks (omissions of DRT responses in some individu-
als, e.g., are indicative of interference when braking is required at the same time). Con-
sequently, being able to generalize cognitive states across multiple instances of the same
type of event not only within a single subject, but also across subjects is a challenging
problem that in general will require some form of calibration that is beyond the work
reported here. Rather, we will tackle the simpler, but still difficult problem of trying to
detect the same systemic cognitive state type across multiple instances within the same
subject.

2.7. Comparison with other work using driving tasks

Neubauer et al. introduced an autonomous simulated driving platform to infer human cog-
nitive states by leveraging stochastic filtering which is then used to determine the decision for
engaging or disengaging the driving assistant. They used several physiological signal types,
such as electro-dermal activity (EDA), electroencephalography (EEG), heart rate, and heart
rate variability (Bixler et al., 2015). Although this paper provided a way to explore the effects
of different signal modalities on estimating human cognitive states, it did not explore some
important physiological markers, including the morphological characteristics of fNIRS, blood
pressure, and respiration signals which have the potential for an accurate estimation of human
cognitive states. In our study, we acquired an extended number of signal types, including
EEG, fNIRS, human gaze, arterial blood pressure (ABP), skin conductance, and respiration
to further investigate their capability on predicting cognitive states.

Another research study explores drivers’ stress levels by utilizing multiple signal types
recorded from 22 participants, including EDA, ECG, and EEG in a driving simulation envi-
ronment (Mühlbacher-Karrer et al., 2017). Despite this paper presented a method for the
assessment of drivers’ stress levels based on cellular neural networks (CNNs) with the help
of multiple sensor modalities, their data set has an inadequate number of participants which
might cause their model to overfit.

Zahabi et al. investigated the effectiveness of using video-based methods to learn advanced
driver-assistance systems which would be used to reduce high crash rates associated with
degradations in older people’s cognitive and physical abilities (Zahabi, Razak, Shortz, Mehta,
& Manser, 2020). The authors used fNIRS and EEG collected from 20 older participants who
have an average age of 63.1 years and leveraged them to measure the degradation of partici-
pants’ cognitive capabilities. Similarly, this data set includes a lower number of participants
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within a specific age range. We generated our data set with a sufficient number of participants
which allows us to develop machine–learning models that generalize well.

Huang et al. conducted a study to assess drivers’ mental workload in a simulated driv-
ing platform. The authors recorded multiple signal types such as EEG, ECG, and EDA to
predict drivers’ cognitive load in a NASA-TLX setting by leveraging state-of-the-art machine
learning methodologies, including XGBoost, CNN, long short-term memory (LSTM), and the
fusion of CNN and LSTM (Huang, Liu, & Peng, 2022). In our study, we used an advanced
methodology called domain generalization to enhance the generalization performance.

Brouwer et al. examined the physiological impacts of participants’ behaviors as a response
to real driving in an adaptive cruise control (ACC) system (Brouwer et al., 2017). The authors
recorded heart rate and EEG signals from 15 participants and specifically focused on heart
rate and blink responses to the participants. Even though this paper examines the variations
in heart rate and blinks as a response to ACC behavior, the data set also provides an insuf-
ficient number of participants. Moreover, the stress level of the participants was generated
based only on acceleration and deceleration events. In our experimental setup, the stress lev-
els of the participants were generated by different combinations of secondary tasks added to
the primary driving task. The secondary tasks, such as braking, communication, and tactile
stimulation and their various combinations, are essential for investigating different types of
cognitive states.

Overall, none of the above experiments include interactive components with other humans
such as the communication events included in our paradigm. Most other studies also used a
much smaller number of subjects, did not utilize multitasking paradigms to cause changes
in systemic cognitive states, and did not collect a similarly comprehensive set of relevant
physiological and neurophysiological data together with behavioral and event data that can
also be used for determining the extent to which context information is necessary for inferring
the requisite systemic cognitive states.

3. Methods

3.1. Participants

One hundred and thirteen participants from the local community were recruited to partic-
ipate in a single session study that lasted approximately 120 min. Thirty-three participants
were excluded: 14 due to technical issues and 19 due to simulator sickness or other discom-
fort. In our final data set of 82 participants, the average age was 20 years old1 (standard
deviation of 3 years), 46.8% identified as female and the remainder identified as male, all
were right-handed, had normal or corrected to normal vision, had a valid driver’s license, and
drove at least 1 day a week on average. Participants were compensated $20 (n = 18) or 2 h of
research credits for an introductory Psychology course (n = 62). The research protocol was
approved by the Institutional Review Board of Tufts University and in accordance with the
Declaration of Helsinki.
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3.2. Equipment and measurements

This study utilized a medium fidelity partial-cab driving simulator. Software and hardware
were provided by RTI (Ann Arbor, MI). The simulator displayed the environment via five
45-inch liquid crystal displays which created a 180-degree field of view of the forward road
scene. The partial-cab had a working steering wheel, brake pedal, accelerator pedal, and auto-
matic gear shifter. A straight four-lane (two lanes in each direction) highway was simulated.
The highway environment was lined with trees, had clear weather, and took place during
the day. Traffic was light, with cars in the left lane passing the driver roughly every 30 s. The
posted speed limit was 65 mph. The simulator generated images and recorded the driving data
at 60 Hz. This included recordings of driver behavior from cameras and microphones. Audio
of the driving environment was presented to participants through noise–canceling earbuds
(Bose QuietComfort 20).

The tactile DRT was implemented using a cylindrical vibrotactile motor (14 mm in
diameter and 4.5 mm thick) attached to the participants’ right collar bone/shoulder. A
response button was attached to their right index fingertip with hook and loop tape.
Participants were instructed to respond to tactile stimuli that occurred randomly every
6–10 s. The motor vibrated for 1 s or until the button was pressed; whichever came
first.

During the entire experimental session, various physiological signals were collected. A
summary image of these measurements is shown in Fig. 1. fNIRS was measured by a
NIRScout (NIRx Medical Technology, Berlin, Germany) device which consisted of light
emitting diode source pairs (at wavelengths of 760 and 850 nm) fiber bundle coupled
photo-diode detectors (see Fig. 2). These optical data were collected at 7.81 Hz. These
data were complemented with a suite of physiological measurements; respiration, skin
conductance, ABP, and peripheral oxygen saturation.2 An RSP100C (BIOPAC Systems,
Goleta, CA) respiration belt was attached around the participant’s chest. On the par-
ticipant’s left hand, skin conductance was measured with an EDA100C (BIOPAC Sys-
tems) EDA sensor as well as a NIBP100D (BIOPAC Systems) beat-to-beat finger plethys-
mography system. An OXY100E (BIOPAC Systems) finger clip pulse oximeter was
attached to the left thumb. This suite of data streams was collected at 20 samples per
second.

EEG was collected at 500 Hz using an 8-channel Enobio (Neuroelectrics, Cambridge, MA,
USA) system. 3.14 cm2 silver/silver chloride electrodes were placed at the international 10-10
system locations FC1, FC2, FC5, FC6, CP1, CP2, CP5, and CP6.

A Pupil Core (Pupil Labs, Berlin, Germany) was used to collect eye movements, pupil
diameter, and blink rate during this experiment. This eye tracker contained dual 200 Hz eye
cameras and a 120 Hz world camera.

Lab streaming layer was used to synchronize and aggregate the time series data across
different data acquisition devices and programs via a dedicated, high-bandwidth computer
network (Asus GT-AC5300 router). Fig. 3 shows a system schematic of this instrument syn-
chronization through LSL.
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12 M. Scheutz et al. / Topics in Cognitive Science 00 (2023)

Fig. 2. Arrangement of functional near-infrared spectroscopy (fNIRS) optodes over the participant’s prefrontal
cortex, and an image of the fabric cap used to apply the array.

3.3. Experimental procedure

Participants completed surveys on driving history and demographics. Next, they were
brought to the driving simulator and were set up with the physiological monitoring equip-
ment. The experiment consisted of two driving scenarios: one with the DRT and one without
the DRT. The order in which these scenarios were presented was counterbalanced over par-
ticipants. The DRT was setup and introduced to half of the participants at this time; the other
half of the participants were setup and introduced to the DRT during the brake before the sec-
ond half of the experiment. Participants were then introduced to the driving simulator. They
were instructed to stay in the right lane for the entire drive and to maintain a comfortable and
appropriate speed while keeping in mind the posted speed limit of 65 mph.

Each scenario was 37.4 km long and took approximately 25 min to complete. The begin-
ning of the drive consisted of 5.4 km (approximately 3 minutes) of just driving to allow the
driver to acclimate to the simulation. After this section of the drive, the DRT began in one
of the two drives (counterbalanced across participants). For the remainder of the scenarios
(regardless of the presence or absence of the DRT), participants periodically engaged in six
braking events and in four lure braking events. Braking events consisted of a vehicle appear-
ing 200 m in front of the driver. Participants approached this lead vehicle until it was 75 m
ahead and then followed this lead vehicle at a fixed distance of 75 m for 20 s. At that point, the
lead vehicle rapidly decelerated for 5 seconds while its brake lights activated. After a braking
event, the lead vehicle rapidly accelerated away from the driver. Lure braking events were
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Fig. 3. Schematic of various data collection devices and coregistration.
Abbreviations: ABP, arterial blood pressure; D, de-oxyhemoglobin; HR, heart rate; LSL, lab streaming layer;
MATLAB, matrix laboratory; O, oxyhemoglobin; RESP, respiration; SCON, skin conductance; SpO2, peripheral
oxygen saturation; STIM, stimulus system including driving simulator and detection response task; USB, universal
serial bus.

similar to real braking events; however, after 20 s, the lead vehicle accelerated away from the
driver and did not brake. The braking and lure braking events were spaced out throughout
the drive so that they were approximately 1–3 minutes apart. The events were presented in
different orders across participants to minimize any possible impact of order effects, and the
scenarios were otherwise identical in terms of the number and type of events.

During each scenario, participants responded to a series of basic fact questions about them-
selves (e.g., “Are you right-handed?”). Twenty questions were asked during each drive (for
a total of 40 different questions), occurring roughly every 30–60 s. In addition, participants
were allowed to rest briefly between the two scenarios. After the second scenario, partici-
pants filled out a final questionnaire that asked about aspects of the drive and contained the
simulator sickness questionnaire.

3.4. Performance and behavioral label generation

Participant performance was measured by driving performance and reaction times to the
various tasks (i.e., braking events, communication events, and DRT responses). These perfor-
mance measures were used as behavioral labels. Considering the individual differences across
participants, we assumed that event-based labels may not fully reflect the actual cognitive
states for all participants. Thus, 13 additional labels were created based on the participant’s
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14 M. Scheutz et al. / Topics in Cognitive Science 00 (2023)

behavior and performance during communication events, braking events, the participant’s
control of the car’s steering, the vehicle’s heading angle and position. For the DRT signal, an
additional label missed DRT was added due to the distraction of the participant.

Driving performance was assessed by the position offset from the middle of the lane, the
vehicle’s heading offset, and the change in the steering position. Data were consolidated into
1-s windows of data through the duration of the trial. Each driving performance category was
partitioned into their best 15% and worst 15% of their windowed data.

Task performance was measured by the participants reaction times to the DRT, the com-
munication events, and the braking events. A unique label was made if the participant did
not respond to the DRT stimulus. The slow DRT label was the longest 25%, or 1st quartile,
of the reaction times to the DRT and the fast DRT label was the shortest 25%, or 3rd quar-
tile, of that participant’s reaction times. The labels for the communication event were slow
communication which was the longest 25% of the total individual’s response times and fast
communication was the shortest 25% of their reaction times.

3.5. Data preprocessing

As physiological data are known to be noisy, we deployed various data pre-processing
techniques to remove noise and other artifacts that would negatively impact the training of
machine learning models for inferring cognitive states.

3.5.1. Functional near-infrared spectroscopy and arterial blood pressure
Preprocessing of fNIRS began with the elimination of motion artifacts and drifts and the

removal of channels with large noise. Raw asynchronous continuous-wave intensity measure-
ments from each source-detector pair and each wavelength from the fNIRS instrument were
first interpolated (using p-chip interpolation, matrix laboratory [MATLAB]) onto a continu-
ous time axis with a sampling frequency of 20 Hz. Linear peace-wise detrending was then
done by finding regions in which the variance of the signal is above the 75th and below the
25th percentiles, and using these as breakpoints in the detrend in order to remove any drifts or
jumps in the signal that was not physiological.

Cleaned intensity measurements for each source-detector pair were then used to calculate
changes in the concentration of oxy-hemoglobin (�HbO) and changes in the concentration of
deoxy-hemoglobin (�Hb) or changes in the concentration of total-hemoglobin (�HbT) using
modified Beer–Lambert law (Blaney, Sassaroli, Pham, Krishnamurthy, & Fantini, 2019). A
wavelength-dependent differential path-length factor based on absolute absorption coefficient
(μa) and absolute reduced scattering coefficient (μ′

s) values previously reported on healthy
participants (mean age, 28 ± 4 years) taken on the forehead (Hallacoglu et al., 2012). Next,
the noise in temporal �HbO (�HbO(t )), temporal �Hb (�Hb(t )), and temporal �HbT
(�HbT(t )) were calculated above physiologically relevant frequencies to identify any chan-
nels with high instrumental noise for exclusion. Each signal was first high-pass filtered above
1.7 Hz (i.e., above heart rate). The windowed variance of the high-pass filtered signal was
calculated, and the condition was set that if the median variance was above a threshold, the
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channel was neglected in further analysis. A threshold of 1 μM was used as this threshold for
all signals.

ABP was measured using finger plethysmography (CNSystems CNAP Monitor 500, Graz,
Austria). ABP was measured beat-to-beat on the subject’s left index or middle finger, and
it represents instantaneous ABP values, which thus provide systolic maxima and diastolic
minima.3 We interpolated ABP signals using p-chip interpolation, MATLAB onto the same
20 Hz time axis as hemodynamic signals. Recalibration of the arterial blood pressure (ABP)
signal was a common issue, which caused an ABP reading that is of no use. Each ABP time
trace was automatically searched for these segments, and in sections in which recalibration
occurred, the segment was excluded from further analysis. We collected and processed the
ABP signals for the further evaluation of their effects on an assessment of different cognitive
states. However, this study does not include an analysis of the performance of ABP signals
on cognitive state estimation.

3.5.2. Electroencephalogram (EEG) Power spectral density (PSD)
The PSD of EEG is one of the most widely used features of EEG signals (Qin, Zheng, &

Chen, 2019; Hossain, Yaacob, & Nordin, 2021; Hamzah, Norhazman, Zaini, & Sani, 2016;
Al-Nafjan, Hosny, Al-Wabil, & Al-Ohali, 2017). Specifically, PSD measures the power dis-
tribution of a given signal for each frequency in a given time-frequency transform (Stoica
et al., 2005). From the raw EEG data, we extracted the EEG-PSD features using the five
standard EEG frequency bands: δ (1–4 Hz), θ (4–8 Hz), α (8–13 Hz), β (13–30 Hz), and γ

(30–100 Hz). Even though PSD is one of the most common extracted features for EEG sig-
nals, there is no common consensus on how to select the time window for the periodogram
function. Specifically, if one selects a too narrow time window, the frequency analysis might
be inaccurate, leading to a poor frequency resolution. On the other hand, a wide time window
might give a better frequency resolution but also leads to a poor time resolution. Following
the seminal work in Wang, Nie, and Lu (2014b), Garg et al. (2021), Zheng, Zhu, Peng, and
Lu (2014), Zheng and Lu (2015), we decide to use a periodogram having a 1 s nonoverlap-
ping rectangular window to estimate the PSD using the MATLAB Signal Processing Toolbox.
Particularly, the periodogram PSD estimator produces the average spectral power over each
frequency via discrete Fourier transform (Al-Nafjan et al., 2017; Hamzah et al., 2016). The
spectral power is then integrated over each EEG frequency band to produce the EEG-PSD
features. Finally, from eight EEG channels, using a time window of 1 s and five frequency
bands, a 1 s frame of EEG-PSD data corresponds to a data matrix of size 40 × 1.

3.5.3. Eye gaze (pupil diameter)
Eye gaze is a good indicator of cognitive processes. Eye gaze data were recorded using a

Pupil Core (Pupil Labs) eye tracker to obtain the pupillometry signal with a sampling rate
of 400 Hz that contains a 120 Hz world camera and a 200 Hz binocular camera. Each pupil
diameter sample contains two parameters: the left eye diameter and the right eye diameter. By
averaging the pupil diameter of two eyes separately over a time window of 1 s, a 1 s frame of
pupil diameter data corresponds to a data matrix of size 2 × 1.
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16 M. Scheutz et al. / Topics in Cognitive Science 00 (2023)

Fig. 4. Visualization of 13 behavioral markers with a window size of 6 s. The vertical axis is the binary label for
each marker and the horizontal axis is the index of the window. Noting that the label imbalance happens in all the
markers. In some markers, the imbalance is more severe than in others.

3.5.4. Data balancing
As previously discussed at the end of Section 3.4, 13 different logical markers were gener-

ated based on the participants’ behaviors, such as DRT response time, communication event,
braking event, steering event, the position of the car, and the heading error as the initial labels.
These labels were automatically generated from the observed events and classified into two
categories: fast/high and slow/low identified by a threshold. For example, the Slow Steering
marker denoted the bottom 15% of the change in the steering wheel angle, while the Fast
Steering marker took the top 15% of the change in the steering wheel angle, Heading Off-
set Low represented the lowest 15% of the participant’s heading error, while Heading Offset
High is the highest 15% of the participant’s heading error. Fig. 4 visualizes these 13 behav-
ioral markers.

If two behavioral markers are generated from the same participant’s behavior but belong
to different categories, then they are called extreme behavioral markers. For instance, since
High Heading Offset and Low Heading Offset are both generated from Heading Offset behav-
ior but belong to two different categories, that is, the highest 15% and the lowest 15% of
the participant’s heading error, they are a pair of extreme behavioral markers. Finally, from
13 behavioral markers, we form six extreme marker pairs: Slow DRT - Fast DRT, Slow
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Fig. 5. Combining the Heading Offset Low class with the Heading Offset High class and removing the intermediate
class leads to a balanced data set. The horizontal axis denotes the Heading Offset Error in degrees, while the
vertical axis denotes the number of samples. Heading Offset Low (labeled by “–1”) represents the lowest 15% of
the participant’s heading error, while Heading Offset High (labeled by “1”) is the highest 15% of the participant’s
heading error. After removing the intermediate class, there is an equal chance to classify any data point into
Heading Offset Low or Heading Offset High.

Communication - Fast Communication, Slow Braking - Fast Braking, Slow Steering - Fast
Steering, Low Position Offset - High Position Offset, and Low Heading Offset - High Head-
ing Offset.

Since these markers are constructed based on a biased threshold (e.g., 15% top and bottom
of Heading Offset), the resulting labels are heavily imbalanced, making it difficult to quantify
the classification performance. To address this problem, we combined two extreme behavioral
markers from the same category and remove the intermediate labels to form balanced datasets.
Taking the Heading Offset markers as an example, we first took the union of an extreme
behavioral marker pair, that is, the union of High Heading Offset and Low Heading Offset
labels, making it with three classes: Heading Offset Low (denote by “–1”), Heading Offset
High (denote by “1”), and intermediate class (neither Heading Offset Low nor Heading Offset
High, denote by “0”). Since both Heading Offset Low and Heading Offset High are based
on the same threshold of 15%, these two classes must have the same number of samples.
Therefore, removing the intermediate class will lead to a binary classification problem with
balanced labels. In other words, after removing the intermediate class, any data point can only
be assigned to two classes: Heading Offset Low (“–1”) or Heading Offset High (“1”) with an
equal chance of 50%. Fig. 5 illustrates our data balancing process using Heading Offset Low
and Heading Offset High markers.

3.5.5. Motivation of domain generalization
Based on the balanced data, the goal is to develop a predictor/classifier such that given

the measured data and behavioral states from several participants, that is, whether they are
fast or slow when communicating, braking, steering, and so on in a particular experimen-
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tal linked to the various cognitive states, one can predict the corresponding behavioral states
for the new-coming participants. The key challenge is, in practice, the measured sensor data
from new-coming participants may not share the same data distribution as that of the training
participants (Duan et al., 2020; Han & Jeong, 2021; Raza, Rathee, Zhou, Cecotti, & Prasad,
2019; Wu, Xu, & Lu, 2020; Zhao, Yan, & Lu, 2021), which violates the basic assumption
in most traditional machine learning algorithms, requiring that the training and testing data
are independently and identically distributed. This distribution shift phenomenon has been
observed not only for fNIRS signals (Lyu et al., 2021) but also for EEG signals (Raza et
al., 2019); Wu et al., 2020)). Recent works have shown that the performance of a predic-
tor/classifier trained on the data from one group of participants usually degrades when testing
on the data from another group of new participants. For instance, an fNIRS-based cognitive
load estimator may not generalize well across different participants (Lyu et al., 2021), and a
well-trained drowsiness-driving classifier based on EEG data performs badly when applied to
the new participants (Cui, Xu, & Wu, 2019). Lots of work has been proposed for address-
ing the distribution shift problem, here we mainly focus on domain generalization (DG)
(Blanchard, Lee, & Scott, 2011) methods, which aim to find the models that can gener-
alize well on the new (unseen) participants. Since DG does not require accessing unseen
(test) data during the training time, it is considered a realistic but challenging problem
(Wang, Lan, Liu, Ouyang, & Qin, 2021). In the next section, we introduce some well-known
DG methods and employ them to our problem to overcome the challenge of distribution
shift.

3.5.6. Notations and problem formulation
The data (fNIRS/EEG-PSD) are first segmented by a nonoverlapping sliding window of

size w. Since EEG-PSD has a higher temporal resolution together with a shorter time-response
than fNIRS, we decide to use w = 3 s for fNIRS data and w = 1 s for EEG-PSD. For the
pupil-diameter signals, we decide to select the same window w = 1 as EEG-PSD. The data
set X, therefore, is a collection of data segments and their labels, that is, X = {(Xi, yi)}N

i=1,
where Xi denotes ith segment, yi denotes its corresponding label, and N denotes the number
of segments. Each segment Xi corresponds to a tensor of size (c) × ( f × w), where c, f , and
w represent the number of channels, the sampling frequency, and the size of sliding window,
respectively. For instance, if the data are EEG-PSD, c = 40 (five bands with eight channels
per band) and f = 1 Hz, then each data segment Xi with window size w = 1 s corresponds to
a data matrix size 40 × 1. If the data are fNIRS-�HbO, c = 20 and f = 20, then each data
segment Xi with window size w = 3 s corresponds to a data matrix size 20 × 60. If the data are
pupil diameter, c = 2 (diameters of the left eye and the right eye) and f = 1 (the average value
of pupil diameter in the same window), then each data segment Xi with window size w = 1
s corresponds to a data matrix size 2 × 1. The label yi is one of the six extreme behavioral
marker pairs: Slow DRT - Fast DRT, Slow Communication - Fast Communication, Slow
Braking - Fast Braking, Slow Steering - Fast Steering, Low Position Offset - High Position
Offset, Low Heading Offset - High Heading Offset. We follow the procedure described in
Section 3.5 to form a balanced data set, that is, the label yi ∈ {−1, 1}, where –1 and 1 denote
the Slow/Low and Fast/High events, respectively.
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3.6. Machine learning models for fNIRS, EEG, and eye gaze

Even though fNIRS and EEG are both linked to the same neural activity, these signals
are very different but complementary to temporal and spatial resolution. Therefore, we use
different models to deal with fNIRS data and EEG-PSD data.4 Next, we describe how the
learning models for fNIRS and EEG-PSD are separately selected.

3.6.1. Learning models for fNIRS
Motivated by the state-of-the-art time-series classification learning models in Karim,

Majumdar, Darabi, and Harford (2019), Fawaz et al. (2020), we decide to use the multivariate
long short-term memory fully convolutional network (MLSTM-FCN) (Karim et al., 2019),
and InceptionTime (Fawaz et al., 2020) as two candidate models for fNIRS.

• Multivariate long short-term memory fully convolutional network (Karim et al., 2019).
The MLSTM-FCN model consists of two branches: an LSTM block and a fully convo-
lutional network (FCN) block. Two blocks are operated in parallel, where one can be
treated as an augmentation of the other. The FCN (Wang, Yan, & Oates, 2017) block
is composed of three temporal convolutional blocks where each is followed by batch
normalization and a rectified linear unit (ReLU) (Agarap, 2018) activation function.
Squeeze-and-excitation blocks are added behind the first two convolutional blocks for
input feature maps recalibration, while a global average pooling layer is added to the
end of the last convolutional block. The output from the FCN block and long short-
term memory (LSTM) block is concatenated and fed to a linear classifier for the final
classification task. We keep all model parameters as same as the settings in the original
paper (Karim et al., 2019) but set the number of LSTM cells as eight without applying
a grid search.

• InceptionTime (Fawaz et al., 2020). The InceptionTime model consists of an ensemble
of five Inception networks that are initialized randomly to better stabilize the model.
Each Inception network cooperates ResNet (He, Zhang, Ren, & Sun, 2015) modules
with the inception modules where filters with various lengths are applied simultane-
ously to the input time series (Ruiz, Flynn, Large, Middlehurst, & Bagnall, 2020) for
diverse feature extraction. The usage of the bottleneck layers (He et al., 2015) further
reduces the model complexity and speeds up the training process. Again, we keep all
the parameters of the model the same as the setting in the original paper (Fawaz et al.,
2020).

3.6.2. Learning models for electroencephalogram (EEG) power spectral density (PSD)
For EEG-PSD data, we use a multi-layer perceptron (MLP) having two fully connected

(FC) layers with a ReLU activation function (Agarap, 2018) followed by a linear layer as
the learning model. To prevent the neural networks from overfitting, a dropout layer is added
after the ReLU layer (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014).
Indeed, the first two FC layers are aimed at extracting meaningful features, while the last
linear layer acts as a classifier. It is worth noting that the MLP architecture is extensively used
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Table 3
Multi-layer perceptron (MLP) architecture for EEG-PSD data

Layer Operation Output size

Input – (N, 40)
The first FC layer Linear(40, 40) + ReLU + Dropout(0.25) (N, 40)
The second FC layer Linear(40, 32) + ReLU + Dropout(0.25) (N, 32)
The last linear layer Linear(32, 2) (N, 2)

in literature for learning from EEG-PSD data (Arsalan, Majid, Butt, & Anwar, 2019); Katmah
et al., 2021; Kuremoto, Baba, Obayashi, Mabu, & Kobayashi, 2015; Lin, Wang, Wu, Jeng, &
Chen, 2007). For convenience, the learning model for EEG-PSD data is called power spectral
network (PSD-NET). Details of the MLP structure for PSD-NET can be found in Table 3.

3.6.3. Learning models for eye gaze
Motivated by the state-of-the-art time-series classification learning models in Karim et al.

(2019), Fawaz et al. (2020), we decide to use the MLSTM-FCN (Karim et al., 2019), and
InceptionTime (Fawaz et al., 2020) as two candidate models for eye gaze (pupil diameter).
We use the same model settings for MLSTM-FCN and InceptionTime as described for fNIRS.

3.6.4. Baseline algorithm
Based on these learning models, the Empirical Risk Minimization (ERM) algorithm serves

as the baseline learning algorithm for fNIRS, EEG-PSD, as well as pupil diameter signals. In
particular, ERM aims for minimizing the empirical risk (classification error) from all trained
participants without employing any DG techniques.

3.6.5. Domain generalization algorithms
To address the distribution shift problem, three different DG methods: Maximum Mean

Discrepancy-Adversarial Autoencoder (MMD-AAE) (Li, Pan, Wang, & Kot, 2018b), Meta-
Learning Domain Generalization (MLDG) (Li, Yang, Song, & Hospedales, 2018a), and Cor-
relation Alignment (CORAL) (Sun, Feng, & Saenko, 2017) are employed. Here, we utilize the
implementation in DomainBed (Gulrajani & Lopez-Paz, 2020) and adapt the feature extractor
in PSD-NET for each DG method.

• Maximum Mean Discrepancy-Adversarial Autoencoder (Li et al., 2018b). MMD-AAE
is an adversarial training-based DG method. MMD-AAE uses an adversarial autoen-
coder to align the distributions in the representation space of different domains via
minimizing their MMD and matching the learned representation distribution to a prior
distribution in an adversarial manner.

• Meta-Learning Domain Generalization (Li et al., 2018a). MLDG is a meta-learning
DG method that separates multiple seen domains into meta-train and meta-test domains
for reducing the distribution shift and performing optimization which leads to an
improvement in learning performance.
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Fig. 6. Overview of single trial event-related potential (ERP) extraction.
Abbreviations: DRT, detection response task; EEG, electroencephalogram; ICA, independent component analysis.

• Correlation Alignment (Sun et al., 2017).CORAL is a DG method that is based on
the idea of matching the mean and covariance of feature distributions from different
domains to perform domain alignment.

3.7. Event-related potential estimation

We also investigate single-trial event-related potentials (ERPs) during a DRT event which
is shown in Fig. 6. The prediction of ERPs from EEG signals is significant to assess the
cognitive states of an individual. The most common method to extract ERPs from EEG is
to take the grand average of EEG channels from multiple trials with the aim of eliminat-
ing the sensor-based and ERP-independent neuronal activity noise. Although the averaging
procedure is practical to determine the main morphological characteristics of event related
potentials (ERPs), it does not provide a way to assess human’s responses to specific types of
stimulations which differ across trials (Cecotti & Ries, 2017). An ERP response is charac-
terized by different brain waves that occur following the onset of the stimulus, such as N1,
N2, and P3. N1 is assumed to appear between 90 and 200 ms after the onset of the stimulus
(Sur & Sinha, 2009). Although there have been research works propose that N1 is corre-
lated with selective attention (Thornton, Harmer, & Lavoie, 2007) or emotional stimulus (Hu
et al., 2017), the early potentials are usually associated with physical and sensory stimulation
(Golob et al., 2009). N2, which occurs between 180 and 325 ms following the stimulation, is
related to the recognition and characterization processes of the brain (Patel & Azzam, 2005).
P3 is evoked between 300 and 400 ms after the onset of the stimulation and is correlated with
selective attention (i.e., higher attention generates higher P3 amplitudes (Sur & Sinha, 2009).
All the mentioned ERP components are associated with attentional interest and mental work-
load (Ghani, Signal, Niazi, & Taylor, 2020). The ERP generation techniques, which aim to
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assess the cognitive workload, are investigated into two categories in terms of the task type
that the participants accomplish: dual-task and single-task (Ghani et al., 2020). In this study,
we utilize the dual-task technique by considering the driving task and the DRT event (pushing
the button after the tactile stimulation) as the primary and the secondary tasks, respectively.

First, signal epochs of all EEG channels related to the DRT events are taken. The onset
of the DRT event is assumed to be the stimulation of the vibrotactile motor fixed to the
participants’ right collar bone/shoulder (depicted at the top of Fig. 6). Then, a 6th − order
Butterworth Bandpass Filter between 0.1Hz − 60Hz was applied to the EEG signal epochs
to remove the out-of-band noise. Next, the mixture of signal epochs is decomposed into its
statistically independent components via independent component analysis (ICA). The ICA
component which is related to blink artifacts is removed by using blink information taken
from gaze recording. To do this, ICA components are compared with the blink information,
the component which includes instantaneous spikes on the amplitude at the same time as the
blinks are determined, and the blink artifact-related ICA component is removed manually. A
Kalman Smoother is utilized to smooth the blink artifact-removed EEG channels (Kalman,
1960). Finally, the ERPs are extracted from cleaned EEG epochs.

3.7.1. Independent component analysis
There are several motion artifacts induced by body movements and recording devices

which contaminate EEG signals, such as eye movements, blinks, respiratory exertion, mus-
cle, and cardiac activity (Louis et al., 2016). Among those, eye movements and blinks are
considered as fundamental sources of motion-corrupted EEG signals (Joyce, Gorodnitsky, &
Kutas, 2004). ICA is an effective tool to decompose a mixture of linear signal streams into
its hidden components. ICA is a generative model and is implemented with the presumption
that the latent components are statistically independent and non-Gaussian, and the number of
components is the same as the number of input signal streams. In this study, ICA is expressed
as follows:

s = A × c, (1)

where s = (s1, s2, . . . , sM ), c = (c1, c2, . . . , cM ), and A = [ai j] for i, j = 1, 2, . . . , M repre-
sent the vector of the linear mixture of EEG channels, the vector of statistically independent
hidden components, and the unknown mixing matrix, respectively. Here, A and c are unknown
and the aim is to find the best predictor of M independent components, ĉ, from M observa-
tions, s, by estimating A−1 which is the inverse of mixing matrix A. Then, A−1 is used to
obtain the latent components with the following expression:

ĉ = A−1 × s. (2)

Finally, the mixture of linear EEG signals is reconstructed with s = A × ĉ. In this study,
M = 8 which represents the number of EEG channels. To calculate the unmixing matrix
A−1, we have utilized fastICA algorithm that explores a linear combination of non-Gaussian
components while increasing the statistical independence within the components as much as
possible (Hyvärinen & Oja, 2000). Fig. 7 depicts one channel raw EEG signal and the blink
information taken from pupil data. The amplitude of zero and one of the blink signals repre-
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Fig. 7. Raw electroencephalogram (EEG) (Channel CP1) with blink information.

Fig. 8. Blink artifact removal: Independent component analysis (ICA) components where Component 4 represents
the blink artifact (left) and different electroencephalogram (EEG) channels with and without blink artifact (right).

sent the eye opening and the eye closure, respectively. The blinks are observed on EEG signal
as spikes with higher amplitude. To extract the blink artifacts, fastICA is applied to prepro-
cessed EEG. Fig. 8 (left) shows the decomposed ICA components taken from one participant.
Here, the component 4, which is related to the blink artifact, is removed to reconstruct the
EEG channels. Fig. 8 (right) depicts two EEG channels (CP1 and CP2) before and after ICA

 17568765, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/tops.12669 by T

ufts U
niversity, W

iley O
nline L

ibrary on [12/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



24 M. Scheutz et al. / Topics in Cognitive Science 00 (2023)

removal. It can be seen that the spikes corresponding to blink artifacts do not appear in recon-
structed EEG channels.

3.7.2. Kalman smoother
This is a common technique to predict the state of dynamic linear structures in the presence

of noise Kalman (1960). It is a backward algorithm used to improve the estimation of previous
states based on subsequent observations. In this study, we used the Python library called
“tsmoothie” (Cerliani, 2021) to smooth the EEG signals.

3.8. Eye gaze

Human eye gaze is another benchmark to assess cognitive states which has the capabil-
ity of exposing clues about mental conditions of a person, such as visual attention, situa-
tional awareness, cognitive workload, fatigue, emotional arousal, stress, comprehension, and
immersion. However, a careful examination of gaze parameters is needed for an accurate pre-
diction of cognitive states as multiple cognitive states may be linked to the same gaze param-
eter. For example, mean fixation duration is inversely correlated with the mental load during
flight simulation (Holmqvist et al., 2011), while there is an explicit relationship between fix-
ation duration and visual attention (Skaramagkas et al., 2021). A contextual information in
addition to human gaze can be leveraged to interpret different conditions which influence the
cognitive status of a human.

There are several gaze parameters, such as fixation, blink, saccadic movements, and pupil
diameter. Fixation represents the preservation of eye gaze to a specific point (Skaramagkas
et al., 2021). Fixation count, which is the number of fixations on a specific object, is inversely
correlated with search efficiency (Bjørneseth, Renganayagalu, Dunlop, Hornecker, & Koman-
dur, 2012). Another study suggests that a higher fixation count is related to a greater cogni-
tive workload (Schmutz, Roth, Seckler, & Opwis, 2010). Longer fixation duration is asso-
ciated with task difficulty and hardship in information selection (Wang, Yang, Liu, Cao, &
Ma, 2014a). Blinks are the spontaneous opening and shutting movements of eyelids which
are related to the mental exertion of an individual (Shojaeizadeh, Djamasbi, Paffenroth, &
Trapp, 2019). One study indicates that blink frequency has a negative correlation with visual
attention (Sakai et al., 2017). Another work associates decreased impulsive eye blink rates
with the level of stress (Merkies, Ready, Farkas, & Hodder, 2019). Saccades are described
as instantaneous eye movements between fixations (Shojaeizadeh et al., 2019). The amount
of microsaccades has an opposite correlation with concentration level, while variation in sac-
cadic activations is associated with mental fatigue as a result of time-on-task (Di Stasi et al.,
2013; Buettner, Baumgartl, & Sauter, 2019). Pupil dilation, which represents the variations
in pupil size, is another metric to evaluate the mental status of a human. Pupil dilation is
directly related to the locus coeruleus activity which is effective in controlling physiological
arousal and cognition (Eckstein, Guerra-Carrillo, Singley, & Bunge, 2017; Varazzani, San-
Galli, Gilardeau, & Bouret, 2015).

In this study, we examine the variations in fixation counts during DRT events to which
participants had to respond by pushing the button. For each DRT event, a 1 s time frame is
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Fig. 9. Relationship between communication and braking event times (units in seconds) for a detection response
task experiment session.
Abbreviation: RT, response time.

picked where the onset of the time frame is determined as the stimulation of the vibrotactile
motor. Then, the 1 s time frame is divided into 100 ms time windows which are concatenated
by 50 ms, and the fixation counts are calculated for every time window. Finally, the fixation
counts are averaged over all 1 s time epochs of each participant.

We also explore the change in pupil diameter within the first 3 minutes of the experiment
considering that the participants focus on the task at the beginning of the driving and they
might gradually lose their attention as a result of mind wandering. We applied three-step
preprocessing to denoise the pupillometry signal. First, we used amplitude thresholding to
remove the signal partitions lower than 0.8 mm and greater than 10 mm by considering that
the values lower than 0.8 mm are potential blink artifacts (Saeedpour-Parizi, Hassan, & Shea,
2020) and the pupil dilation is measurable up to 10 mm (Wildemeersch, Peeters, Saldien,
Vercauteren, & Hans, 2018). Second, we applied linear interpolation to fix the extracted parts
(Saeedpour-Parizi et al., 2020). Third, we utilized a fifth-order Butterworth low-pass filter
with a cutoff frequency of 10 Hz to cancel baseline wander (Smallwood et al., 2011). Finally,
we applied a moving average with a window size of 10 s.

4. Analyses and results

4.1. Communication and driving behavior

To test the effect of braking events on communication performance, and vice versa, we var-
ied the relative timing of the communication events and braking events (see Fig. 9 showing
the condition with DRT). The time difference between the end of the question and the begin-
ning of the braking event was varied from –1 to +1 s, in steps of 0.5 s. This offset is termed
stimulus onset asynchrony (SOA). A positive SOA value means that the braking event occurs
before the end of the presented question, and a negative value means that the braking event
occurs after the end of the question.
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The dependent measure of relevance for the communication is the floor transfer offset
(FTO), which is the time in seconds between the end of the question posed to the participant
and the beginning of their articulation of a response. This value can be negative, in which
case the response temporally overlapped with the question. The results regarding the FTO
(which can be interpreted as a communication response time) were surprising: the participants
were significantly faster in the condition with the DRT (F (1, 717) = 7.35, p < 0.01). They
appeared faster in the SOA conditions (in which they simultaneously had to respond to a
traffic event by pressing the brake pedal) than in the baseline condition without braking, but
this difference was not significant in a mixed model with participant and communication event
as random factors (t (38) = 1.321, p = .19).

In a substantial number of communication trials (15%), the participants used filled pauses,
like “uh” or “uhm” at the beginning of their response. As using a filled pause signals an
upcoming delay (a short one for “uh” and a longer one for “uhm,” (Clark & Tree, 2002), this
could indicate that they were delaying their response due to higher cognitive load. Therefore,
we tested whether the proportion of filled pauses in the verbal responses of the participants
was sensitive to the SOA condition and the presence/absence of DRT events. In a logistic
regression using a mixed model with participants as a random factor, we found no significant
effect of either factor on the proportion of filled pauses.

Please note that in the previous analysis of the FTO related to the presence of DRT and
SOA conditions, we used the FTO as measured from the beginning of the articulation, so if
the participant started with saying “uh(m),” the FTO values were measured with respect to
the beginning of the articulation of “uh(m).” We repeated the same analysis with FTO values
measured from the end of the “uh(m)” token (if there was an initial “uh(m)” token), as well as
from the end of the pause following the “uh(m)” token (if there was an initial “uh(m)” token)
and the pattern of result, in terms of what was significant and what was not, was identical.

Fig. 10 shows the communication response times in the different SOA and DRT con-
ditions. There were no significant interactions between the factors SOA and DRT at the
α = 0.05 level.

For the braking response time, there was no significant difference for the presence or
absence of the DRT or for the presence or absence of the communication event (F (1, 708) <

1), suggesting that there was no resource interference between the two tasks (see Fig. 11 for
an overview of these braking data). There was also no significant difference between brak-
ing events which involved a simultaneous communication event and braking events that did
not (F (1, 876) = 2.01, p = .16), lending further evidence to hypothesis that DRT did not
interfere with the other tasks, that is, braking and DRT responses were not sharing cogni-
tive resources as the presence or absence of one of them did not affect the reaction times of
the other.

There was no significant difference in DRT response times for the participants who had
the scenario with DRTs first, or second (t (351) = 0.939, p = .35). To look at the effect of
time (fatigue) on DRT, we computed the Pearson correlation coefficient between the time
of the DRT event in the scenario and the DRT response time. This correlation was 0.06,
in the expected direction (longer response times after longer time) but was not significant
(t (381) = 1.093, p = .275).
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Fig. 10. Communication response time (RT) for different stimulus onset asynchrony (SOA) (in seconds) of detec-
tion response task (DRT) and non-DRT periods. Solid lines represent results during braking, while dashed lines
represent the baseline period.

Fig. 11. Braking response time (RT) for different stimulus onset asynchrony (SOA) (in seconds) of detection
response task (DRT) and non-DRT periods. Solid lines represent results during braking, while dashed lines repre-
sent the baseline period.

Surprisingly, the presence of the DRT task revealed a positive effect on the driving quality,
as operationalized by the standard deviation of the acceleration, as well as the steering wheel
reversal rate (see Fig. 12).

The DRT reaction times themselves were differentially sensitive to multitasking load
caused by the communication events. We divided the DRT events into four categories.
They were labeled as in-question if they occurred during the auditory presentation of the
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Fig. 12. Standard deviation of acceleration and steering wheel reversal rate.

Table 4
Mean detection response task (DRT) response times (ms) in relation to communication events

In-question In-transition In-answer Outside-communication

1236 1165 1046 1126

communication question. They were labeled as in-transition if they occurred right after
the presentation of the communication question, but before the participant answered. They
were labeled as in-answer if they occurred during the time the participant answered the
question. Finally, they were labeled as outside-communication if they occurred outside any
communication-related event. The resulting average DRT reaction times are in Table 4. The
only significant difference in a post-hoc (Tukey) analysis was the difference between in-
question and in-answer (p < .01). So, if the participant was listening to the question, their
DRT response was substantially slower than when they were already articulating their answer.
We know from recent work on communication processing that participants in conversation
have to plan their response already while they are listening to the current turn (Magyari, De
Ruiter, & Levinson, 2017; Levinson & Torreira, 2015). Our result suggests that simultane-
ous listening and response planning require attentional resources that slow down the DRT
responses. However, once the articulation of the verbal response has been launched, there is
no slowdown anymore. This suggests that the articulation of the planned response appears to
be an automatic process that does not require extra attentional resources (see, e.g., (Levelt,
Richardson, & La Heij, 1985)).

4.2. Single-trial ERP extraction

Fig. 13 shows the examples of ERPs taken from the CP1 channels of DRT sessions of
two different participants. During these DRT events, the participants perform dual-task by
responding to the tactile stimulation and maintaining the driving task simultaneously which
causes a higher cognitive workload. The results show a precise estimation of N1, N2, and P3
components of ERPs for different DRT events taken from these two participants. It is seen
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Fig. 13. Examples of event related potential (ERP) responses to detection response task (DRT) events for two
events of two different participants.

from the figure that the ERP components are noticeable at specific time points after the onset
of the secondary task which intensifies the cognitive workload of the participants. Yet, despite
the accurate detection of ERPs for some DRT events, there are other cases where ERPs are
not detected at similar points during experimental runs (even within the same subject) even
though participants received the tactile stimulation and pushed the button. There are multi-
ple possible explanations for this failure, the immediate one being that more discriminating
computational methods for extracting ERPs might be needed. Alternatively, the participants’
DRT responses might not always manifest themselves in ERPs (e.g., due to the variations in
the cognitive context), in which case ERPs might just be of limited utility for inferring the
kinds of systemic cognitive states.

4.3. Eye gaze

Fig. 14 shows the average fixation counts over the responded events of DRT sessions for
four different participants. The results indicate that the average number of fixations increases
after the stimulation. The DRT event occurs every 6 –10 s during the driving simulation
where the participants were instructed to respond to the tactile stimuli. Both performing the
driving task and responding to the tactile stimuli increase cognitive workload which results
in increased fixation counts. Although there are many cases with an extended number of
fixations during DRT events, there are also some reversed cases where a decreased number
of fixations are observed, pointing to the limitations of using a single modality for estimating
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Fig. 14. Average fixation counts over the responded events of detection response task (DRT) sessions for different
participants.

cognitive states. This is in part the case because human cognitive states are modulated by a
variety of factors that the single modality might not be able to pick up. It is thus important
to further investigate additional human gaze parameters (e.g., pupil dilation) to get better and
more comprehensive estimates of cognitive states.

Fig. 15 depicts the variations in pupil diameter within the first 3 minutes of the experi-
ment which were taken from two sessions of three different participants. The starting points
represent the onset of the experiments. The results indicate that the pupil diameter gradually
decreases after the experiment is initiated. The underlying reason is that the participants focus
on the driving task at the beginning of the experiment and after that, they lose their attention
progressively which is a demonstration of mind wandering state (consistent with the findings
of Grandchamp et al., 2014) and as discussed in Section 3.8).

4.4. Learning behavioral states from EEG, fNIRS, and pupil diameter

In this section, our goal is to train learning models that are capable of classifying the behav-
ioral states. As previously discussed, assessing behavioral states acts as an intermediate step
to infer the cognitive states. Specifically, we randomly selected 10 participants from a total of
89 participants and use the fNIRS, EEG-PSD, and pupil diameter signals collected from these
10 participants to form the training and test data set. We follow the leave-one-subject-out pro-
tocol (Dou, Coelho de Castro, Kamnitsas, & Glocker, 2019) to conduct our experiment, that
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Fig. 15. Pupil diameter variation within the first 3 minutes of the experiments taken from three different partici-
pants.

is, using the data collected from nine participants for training and the data collected from the
rest (one participant) for testing. The training data are split into a training set and a valida-
tion set with a proportion of 80% and 20%. As previously discussed in Section 3.5, the label
is alternatively selected from one of the six extreme behavioral marker pairs: Slow DRT -
Fast DRT, Slow Communication - Fast Communication, Slow Braking - Fast Braking, Slow
Steering - Fast Steering, Low Position Offset - High Position Offset, Low Heading Offset -
High Heading Offset, where labels “–1” and “1” denote the Slow/Low and Fast/High behav-
ioral marker, respectively. Instead of jointly predicting these labels, we consider a simpler
problem of predicting them separately. The joint prediction problem will be preserved as our
future work.
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Table 5
Numerical results for baseline models

DRT Non-DRT

Data type InceptionTime MLSTM-FCN InceptionTime MLSTM-FCN

�Hb 49.2 ± 1.9 52.0 ± 0.9 51.9 ± 1.0 51.1 ± 1.5
�HbO 51.5 ± 2.0 50.6 ± 1.7 56.1 ± 0.8 55.3 ± 3.0
�HbT 52.9 ± 2.3 53.1 ± 1.1 53.3 ± 1.1 52.6 ± 1.1

Data type InceptionTime MLSTM-FCN InceptionTime MLSTM-FCN

Pupil diameter 53.7 ± 1.2 52.6 ± 1.9 57.2 ± 1.0 54.1 ± 2.4

Data type PSD-NET PSD-NET

EEG-PSD 59.1 ± 0.2 60.1 ± 0.4

Abbreviations: DRT, detection response task; EEG, electroencephalogram; �Hb, changes in the concentration
of deoxyhemoglobin; �HbO, changes in the concentration of oxy-hemoglobin; �HbT, changes in the concen-
tration of total-hemoglobin; MLSTM-FCN, multivariate long short-term memory fully convolutional network;
PSD-NET, power spectral network; PSD, power spectral density.

Hyperparameters tuning is performed for all DG methods, we apply a grid search over
a range of [0.001,1] for all the hyper-parameters with a log10 scale and choose parameters
and the corresponding model that produce the lowest validation loss. The hyperparameter
tuning procedure is repeated for every test participant, following Gulrajani and Lopez-Paz,
2020). All models working on the EEG-PSD data are trained for 200 epochs using the Adam
optimizer (Kingma & Ba, 2014) with the learning rate 5 × 10−4. The batch size is set to be
32 for ERM and 144 (nine participants, 16 samples from each participant) for MMD-AAE,
MLDG, and CORAL. For the models applied to fNIRS data, we set the batch size as 144 with
the learning rate as 10−4 for Adam optimizer (Kingma & Ba, 2014). For the models applied
to pupil diameter data, we set the batch size as 144 with the learning rate as 5 × 10−5 for
Adam optimizer (Kingma & Ba, 2014). The whole experiment is repeated three times and
the average accuracy and standard deviation values are reported. The above procedures are
applied for all six extreme behavioral marker pairs separately. The details of these extreme
behavioral maker pairs are described in Section 3.5. For the final results, we only report the
accuracy where Fast/Slow steering is used as the label due to its superior performance in
comparison with other behavioral markers.

The results for baseline models, that is, the models without employing DG techniques
for EEG-PSD, fNIRS, and pupil diameter data, can be viewed in Table 5. As seen, the
performance of two chosen algorithms for fNIRS data is close to a random predictor.
Particularly, the highest accuracy for fNIRS data is 56.1% achieved by InceptionTime for
Non-DRT sessions using �HbO data. On the other hand, the best accuracy of the baseline
algorithm for EEG-PSD and pupil diameter is 60.1% and 57.2% both achieved in Non-DRT
sessions, respectively.

Next, the learning performances of three DG methods are shown in Tables 6 and 7. The
accuracy provided by DG methods achieves comparable performances as the baseline for
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Table 6
Numerical results for three domain generalization (DG) algorithms with electroencephalogram (EEG) power spec-
tral density (PSD) data

DG algorithms DRT Non-DRT

ERM 59.1 ± 0.2 60.1 ± 0.4
MLDG 59.4 ± 0.2 60.6 ± 0.4
MMD-AAE 58.5 ± 0.3 61.8 ± 0.8
CORAL 59.1 ± 0.4 60.9 ± 0.8

Abbreviations: CORAL, correlation alignment; DRT, detection response task; ERM, empirical risk minimiza-
tion; MLDG, meta-learning domain generalization; MMD-AAE, maximum mean discrepancy-adversarial autoen-
coder.

Table 7
Numerical results for three domain generalization (DG) algorithms with pupil diameter data

DRT Non-DRT

DG algorithms InceptionTime MLSTM-FCN InceptionTime MLSTM-FCN

ERM 53.7 ± 1.2 52.6 ± 1.9 57.2 ± 1.0 54.1 ± 2.4
MLDG 54.5 ± 1.4 53.9 ± 2.8 59.3 ± 1.7 55.5 ± 2.9
MMD-AAE 53.9 ± 1.5 54.2 ± 2.3 57.2 ± 2.0 56.0 ± 0.9
CORAL 56.2 ± 1.1 54.0 ± 3.1 61.5 ± 2.8 56.5 ± 1.2

Abbreviations: CORAL, correlation alignment; DRT, detection response task; ERM, empirical risk minimiza-
tion; MLDG, meta-learning domain generalization; MMD-AAE, maximum mean discrepancy-adversarial autoen-
coder.

DRT sessions and generally surpasses the baseline algorithm at least 0.5% up to 4.3% for
Non-DRT sessions. The highest improvements belong to EEG-PSD and pupil diameter data.
More specifically, the highest accuracy for EEG-PSD data using a baseline algorithm is 60.1%
for Non-DRT sessions, while the best accuracy of DG method is 61.8%. On the other hand,
the highest accuracy for pupil diameter data using a baseline algorithm is 57.2% for Non-
DRT sessions, while the best accuracy of DG method is 61.5%. As seen, applying the DG
algorithms consistently improves the accuracy of learning models compared to the traditional
ERM method.

Even though we employed state-of-the-art DG methods, the classification performance of
behavioral states is modest. This is not unexpected given that assessing these behavioral states
across multiple instances within subjects and across subjects is a hard problem. It points to
potential limitations of current DG methods which are mainly designed for computer vision
data sets and may not be feasible to apply directly to physiological data sets without appropri-
ate modifications. Yet, given that new DG methods are being proposed all the time, it will be
important to evaluate their performance on the data set and also consider the inclusion of addi-
tional signals and context-based information in an effort to improve classifier performance (if
it is possible).

 17568765, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/tops.12669 by T

ufts U
niversity, W

iley O
nline L

ibrary on [12/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



34 M. Scheutz et al. / Topics in Cognitive Science 00 (2023)

5. Discussion and future work

The overarching question for our experimental framework that motivated all of our machine
learning efforts was whether it is possible to achieve a sufficiently high classification accuracy
of systemic cognitive states across subjects using state-of-the-art machine learning models.
This is important not only for monitoring and potentially aiding individual humans, but also
for improving performance in mixed-initiative teams where humans and autonomous artificial
agents work together in the pursuit of common goals. Current autonomous systems, however,
are unaware of human cognitive states, they have no notion of team capabilities, tasks, and
goals, and they lack the ability to interact with humans and adapt their behaviors on team
dynamics. Genuine artificial teammates, instead, will need to have the ability to assess human
physiological and cognitive states, to understand human goals and intentions as these dynam-
ically shift based on varying task demands, and to anticipate errors and changes in plans so
they can proactively intervene in order to preserve team coherence and performance.

Hence, an important step along the way toward genuine artificial teammates would be
the demonstration of a successful method that is able to classify systemic cognitive states
across individuals (and ideally also across tasks) or to provide a conceptual “impossibility
argument” for why such inferences from physiological and neurophysiological data are not
possible (e.g., appealing to noise in the data, large variations of the signals within an individ-
ual, distributional signal drifts during task performance, etc.). To the best of our knowledge,
neither position has been convincingly made in the literature so far.

The classification results of behavioral states we obtained using standard machine learn-
ing methods (which can then be linked to cognitive states based on the experimental setting)
showed that current DG methods yield only modest classification accuracy (and neither do
ERPs in EEGs, although eye gaze showed promising results for some). In a way, the fail-
ure to obtain accurate classifiers is not unexpected because the classification problem across
multisubject multimodal (noisy) time series data is known to be hard and it is quite possi-
ble that there is just not enough common information in those signals to generate consistent
cognitive state abstractions and that at the very least additional constraining context informa-
tion will ultimately be needed for machine learning model to be able to cope with individual
variation, context-based shifts, and signal drifts. This last point is implicitly supported by
the lack of published methods that demonstrate sufficiently accurate systemic cognitive state
classification based on multimodal physiological and neurophysiological signals across mul-
tiple subjects, despite significant efforts by the community and partial successes for specific
cognitive states within individuals.

It is, however, important to mention that while a general method that works across subjects
for all of the considered systemic cognitive states might be impossible, more specific methods
targeting individual cognitive states could still yield high classification results. A case in point
is our recent success at achieving high classification performance for one of the five systemic
cognitive states: cognitive workload. Using the different experimental/behavioral conditions
to define three different levels of cognitive workload: only driving (level 0), driving and com-
municating (level 1), and driving with braking events and communication (level 2). We per-
formed statistical analyses of various physiological signals, including eye gaze, EEG, and

 17568765, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/tops.12669 by T

ufts U
niversity, W

iley O
nline L

ibrary on [12/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



M. Scheutz et al. / Topics in Cognitive Science 00 (2023) 35

ABP, and utilized several machine learning methodologies, including k-Nearest Neighbor,
Naive Bayes, Random Forest, Support-Vector Machines, and Neural Network-based models
to infer the three workload levels. The results revealed that direct cognitive workload clas-
sification on eye gaze information alone (without predicting behavioral states), specifically
percentage change in pupil size, was able to achieve an accuracy of 80.45 ∓ 3.15 using
Support-Vector Machines while combining eye gaze with EEG was able to reach an accuracy
of 77.08 ∓ 3.22 using a Neural Network-based model (see Aygun, Nguyen, Haga, Aeron, &
Scheutz, 2022 for details).

This is but one example of how the experimental framework introduced in this paper and
the resultant data set (with the accompanying data pre-processing methods) can form the basis
for additional analytical and modeling work that we expect to provide further results for which
sensory modalities are essential for cognitive state inference (and should thus be collected in
other experiments in the future) to demonstrate generalization not only across subjects, as we
have pursued here, but more generally also across different tasks.

6. Conclusion

It is currently still an open research question to what extent statistical machine learning
methods are able to classify systemic cognitive states based on multimodal physiological
and neurophysiological signals across subjects and ideally across tasks. Yet, being able to
detect and track such cognitive states would not only allow for the development of adaptive
technologies that would benefit individuals by taking their cognitive state into account, but
also human–machine teams where the effectiveness of interactions and cooperation critically
depend on individual human performance modulated by systemic human cognitive states.

In this paper, we introduced a multimodal experimental paradigm that was specifically
designed to collect a comprehensive suite of empirical data from human performance paired
with task and event-based context as the basis for investigating methods and machine learning
models for cognitive state inference that can help answer this question. We applied state-of-
the-art DG methods to our data and obtained modest classification results for behavioral states
which are linked to systemic cognitive states. The failure to obtain more accurate classifiers
points to the need for novel classification methods that likely will need to incorporate addi-
tional task-based context in order to improve classification performance. In that sense, our
results can serve as a baseline for evaluating future machine learning models on our data set,
but they could also be taken as a hint that general methods for inferring systemic cognitive
states across subjects (and across tasks) might just not be attainable, despite our best efforts.
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Notes

1 Since the participants are mostly recruited from the college with the average age of
20 years old and, the results in our experiment may not be suitable to apply on other
subjects with higher age and different education.

2 Even though these physiological signals have been collected in our experiment and are
available for analysis, some, for example, ABP and skin conductance, are not further
investigated in this paper. However, we still included them in the description to provide
a complete list of the available signals in our data set.

3 Here, the ABP signal is beat-to-beat ABP, not continuous ABP; however, for conve-
nience, we just use ABP to denote beat-to-beat ABP in the rest of this manuscript.

4 There is some evidence that combining fNIRS and EEG signals could provide better
results than processing them separately (Aghajani & Omurtag, 2016; Omurtag, Aghajani,
& Keles, 2017; Putze et al., 2014), which we will leave this approach for our future work.
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