Equal	Sign	– Part	1
-------	------	--------	---

Tasks		Comments	
Goal for Part 1 – decompose numbers and represent relationships with equations in non-standar form $(a = b + c)$			
A. He	ow many ways can you make 10?	Have students (individually or in pairs) decompose 10 in different	
1. 2. Identi 1. 2.	re & Record:In what ways can you break about 10 cubesgroups of cubes? What numbers of cubes agroup?Write down the ways you made 10 by writiequation in the form "10 = ".fy:Through whole-class discussion, compose athe ways to make 10, representing each wayform $a = b + c$.For each equation suggested, ask whether sthink it's true and why.Do we have all possible ways to break apardo you know?	re in yourusing cubes, cheerios, etc. We decided that having a stacked tower would be optional.ing anScaffold students' thinking about writing an equation in the form a $= b + c$, rather than $a + b = c$. This would likely be whole-class discussion initially for grade K.studentsKeep the list of equations and refer back to it when appropriate for future lessons (e.g.,	
Explo	The Ways can you make 11? re & Record : (In partner pairs) In what ways can you bre 11 cubes into two groups of cubes? Use the chart to record your work.	This will lay some groundwork for true/false equations.Complete one example with students in whole-class discussion. After groups complete the decomposition, homes whole class discussion to	
Identi 1.	fy: Do we have all possible ways to break apar do you know?	rt 11? How	

Picture of my 11 cubes broken apart	Number of cubes in each group	Equation showing what I found
	4 7	11 = 4 + 7

Equal Sign – Part 2

Tasks		Comments
Goal for Part 2 – Finding equivalent quantities equations as true or false	and representing	ng their relationship; Identifying
 A. Equivalent Quantities – Can you fit same amount? Play "Equivalent Quantities Game" Game Rules: Pass out cards, where each card has a mindicated sum (e.g., 3, 2 + 4) and kids fit "partner" (person with card containing a amount). The student pair writes an equation that 	umber or ind their equivalent	Cards are designed so that students can construct equations where there is either (1) an operation on each side; (2) no operation on either side; (3) on operation on left or right side
 Questions for discussion: 1. How do you know your cards show the amount? 2. Write your equation on the board that sl relationship you found. 	same	Discuss the equations students generate and how they determined that the amounts are the same.
3. Are the equations you found <u>true</u> or <u>fal</u> , you know?	<u>se</u> ? How do	<i>Discuss what it means for an equation to be true.</i>
B. True or False?		
Are the following equations true or false? Why	?	
2 + 2 = 10 4 = 4 1 + 2 = 1 + 2 5 = 1 + 3 3 + 3 = 6 + 2 18 + 3 = 18		

Equal Sign – Part 3

	Tasks		Comments	
	for Part 3 – Finding the ions by finding missing		yields equivalent quantities; Solvi	ng open
A	. Finding Balance			
1.		es should we put in the e ve the same number of c		
2.	Can we write an equation that shows this?2. How many red circles should we put in the square on the left so that the squares have the same number of circles? How do you know?	-		
		•	Talk about the cir terms of their colo example, "2 blue 2 red circles is the number of circles circle and 3 red circle	or. For circles an e same
			circle unu 5 reu ci	
	How would you comp number of red circles	blete the expression to sh you needed to add?		

3. Use the expressions to d have the same number o		se squares	
4 + 2	1 + 5		
Write an equation that sl	nows what you found.	-	
B. Find the missing value	in each equation.	Have students use manipulatives or drawin	
3 + 3 = 3 + = 7		to figure out the missing value.	
= 4 + 2 10 = 5 +			
5 + 1 = 6 +			
4 + 2 = + 3 6 =			
6 = + 1 4 + = 5 + 1			

Equal Sign – Part 4

Equal Sign – Fart 4		
Lesson Objective: Develop a relational understanding of the equal sign		
Tasks		Comments
Goal for Part 4 – Determining if equations are tru	ie or false.	
Are the following true or false? How do you kn you explain your answer without adding the n side?		Do students reason about the structure or compute to determine if an equation is true or false? For example, for equations like
2 + 3 = 6		• $16 + 1 = 16 + 5$, do
1 + 1 = 1 + 1 + 1		children compute each quantity or
3 + 1 + 1 = 3		compare them,
10 = 0 + 10		focusing on 1 and 5
16 + 1 = 16 + 3		• $8 + 2 = 2 + 8$, do they see the structur
28 = 28		or try to add
7 + 0 = 0 + 7		
8 = 2 + 6		
2 + 3 = 3 + 2		
8 + 2 = 10 + 2		
1 st -grade extension (subtraction):		
25 - 6 = 37 - 6		
278 - 5 = 349 - 5		
(From Rittle-Johnson et al):		
Can you put the same number in each blank? V 2 + $_$ = 6 2 + $_$ + 1 = 6 + 1	•	

Preliminary thoughts

Rational for sequence of properties

As per Carpenter, Franke & Levi (2003), this sequence involves properties with one (same) variable first, then moves to properties with two (different) variables. This was also the same sequence that we used and tested in LEAP 1-2 projects (order of which was also based on Carpenter et al.)

I think conceptually additive identity would come before additive inverse (e.g., students work with addition before subtraction and will likely be more familiar with addition), unless there is a research-based reason to do otherwise.

Rationale of structure of tasks based on practices of AT in Kaput (2008) and Core

<u>actions from LEAP</u> (we might not want to use all of these, but it would be good for us to cite this work as a research-based argument for why we ask certain things – i.e., we need a research-based structure for our tasks):

- analyze information to develop a conjecture about the arithmetic relationship
- express the conjecture in words
- develop a justification or argument to support the conjecture's truth
- explore different types of arguments, including empirical arguments, representation-based arguments, and arguments based on the algebraic use of number
- identify values for which the conjecture is true
- represent the generalization using variables
- examine the meaning of repeated variables in the same equation
- for properties with multiple variables, examine the meaning of different variables in the same equation
- examine the characteristic that the generalization (property) is true for all values of the variable in a given number domain

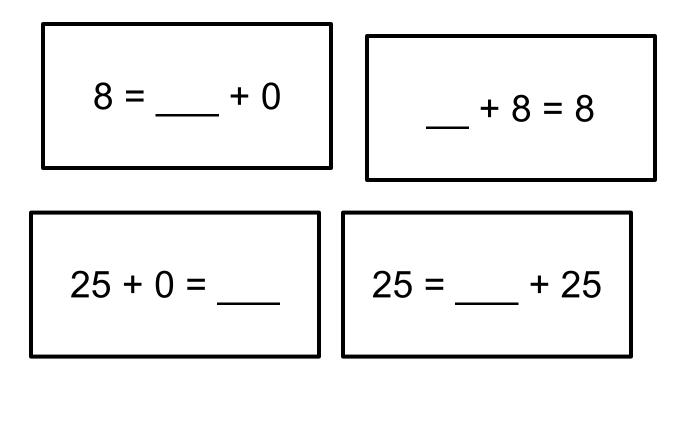
identify the generalization (e.g., property) in use when doing computational work

Additive Identity - Part 1

Tasks	Comments
Goal 1 - analyze information to develop a conjecture about the pr property in words	roperty and represent the
 Problem: Charlotte's birthday is coming soon. One day, she got 5 birthday cards in the mail. The next day, she didn't get any cards. 1. How many cards did she get all together? 2. Draw a picture that shows your thinking. 3. Can you write an equation that shows how you got your answer? 4. Do you notice anything special in these problems? (<i>Follow-up prompts</i>: What do you notice about adding zero? How would you describe this to a friend? 	Whole group activity with kids at the rug. Teacher presents the problem and students discuss their thinking about the number of cards Charlotte has and how they got this. Scaffold students in writing the equation and put 5+0=5 on the board. Change the scenario to have 6 cards, 7 cards, and so on to generate a list of equations representing the Additive Identity property. Begin a conversation about what students notice.
 Game: Find the Missing Number (open equations using Additive Identity) Discuss: Do you notice anything special happening in these equations? Follow-up prompts: What do you notice about adding zero? How would you describe this to a friend? 	Game: Divide the class into two groups. In one group, give each student a card with an open equation. In the other group, give each student a card with a number on it. Students should find their partner so tha their cards match (equation with correct missing number). Discussion: Show the matches on the board. Students discuss why their cards match – what the equations say and what '=' means. <i>Develop a conjecture</i> for Additive Identity or reinforce conjecture developed with Birthday Card problem.

	[
 Discuss: For what numbers do you think your conjecture is true? (<i>Follow-up prompts:</i>) Do you think it is true for all numbers or just some numbers? Which ones? How do you know? 	

Additive Identity – Part 2


Lesson Objective: Generalize, represent, and reason with Additive Identity		
Goals &Tasks	Comments	
Goal 3 - Identify values for which the conjecture is true		
 Discuss: For what numbers do you think your conjecture is true? (<i>Follow-up prompts:</i>) Do you think it is true for all numbers or just some numbers? Which ones? 	Review the conjecture students developed and their responses in the previous lesson regarding the numbers for which the conjecture is true. List students' ideas of numbers for which conjecture is true to motivate the concept that the conjecture is true for "any number".	
Goal 4 - Represent the generalization using variables and repeated variables in the same equation	examine the meaning of	
Problem: Katie started writing an equation on her paper that her teacher was writing on the board. She didn't get to finish. The following is what she wrote. +0 = 1. What number(s) could Katie have put in the missing places of the equation to make the equation true?	Whole-class discussion (??): 1. Ask students what they think the equation says (i.e., do they see it as "some number plus 0 is the same as some number"). Systematically list different possibilities: 1 + 0 = 1 2 + 0 = 2, etc	
2. What can you say about the numbers that go in the missing places?<i>Discuss convention of how an unknown number can be</i>	(This serves as a way to get kids to generalize a pattern to represent any number and also reviews work with equations.)	
3. How could we represent any number here?4. What does your letter mean (represent) to you?	2. The goal is for students to notice that <i>any</i> number can be put in the missing places, but it must be the same number.	
5. If we have to put the same number in the missing places, do you think we should use the same letter or different letters? Why?	5. Introduce mathematical convention that we can use a letter to represent any number.	

		Discuss choice of letter and same letter. Discuss convention of same number, same letter.
Goal 5	- Identify the generalization (e.g., property) in use work	e when doing computational
	em: Last week, it snowed some on Tuesday. We	Discuss what is known about
	measure how many inches. It didn't snow any on	the number of inches of snow
Wedne	esday.	that fell on Tuesday and Wednesday.
1	What can you say about how many inches of	wednesday.
1.	snow fell on Tuesday? On Wednesday?	Question students to see if they
2	How would you represent the number of inches	notice "any number plus zero
2.	of snow that fell on Tuesday?	is that number" applies to this
3	What can you say about the total number of	problem.
5.	inches it snowed on Tuesday and Wednesday?	Can they model the situation
	How do you know?	with an equation such as $a + 0$
4.	Write an equation to show what happened.	=a?

Game: Find the Missing Number

Group 1:

<u>Group 2:</u>

Additive Inverse – Part 1 Lesson Objective: Generalize, represent, and reason with Additive Inverse

Tasks	Comments
Goal 1 - analyze information to develop a conjecture about the property in words	property and represent the
 Problem: Last week, it snowed 4 inches on Tuesday. By the next day, Wednesday, all the snow had melted. 1. What can you say about how many inches of snow were left? How do you know? 2. Write an equation to show what happened. 	Whole group activity with kids at the rug. Teacher presents the problem and students discuss their thinking about the number of inches of snow on Tuesday. Discuss the number of inches left after it melts on Wednesday.
 3. Do you notice anything special in these problems? (<i>Follow-up prompts</i>: What do you notice about subtracting a number from itself? How would you describe this to a friend? 	Scaffold students thinking by considering specific equations: 4 - 4 = 0. Change the scenario to 5 inches, 6 inches, and so on to generate a list of equations representing the Additive Inverse property. Begin a conversation about what students notice.
 Game: Find the Missing Number (open equations using Additive Inverse) Discuss: Do you notice anything special happening in these equations? (Follow-up prompts: What do you notice about subtracting a number from itself? How would you describe this to a friend? 	Game: Divide the class into two groups. In one group, give each student a card with an open equation. In the other group, give each student a card with a number on it. Students should find their partner so that their cards match (equation with correct missing number).
	Discussion: Show the matches on the board. Students discuss why their cards match – what the equations say and what '=' means. Develop a conjecture for Additive Inverse or reinforce conjecture developed with Snowfall problem.

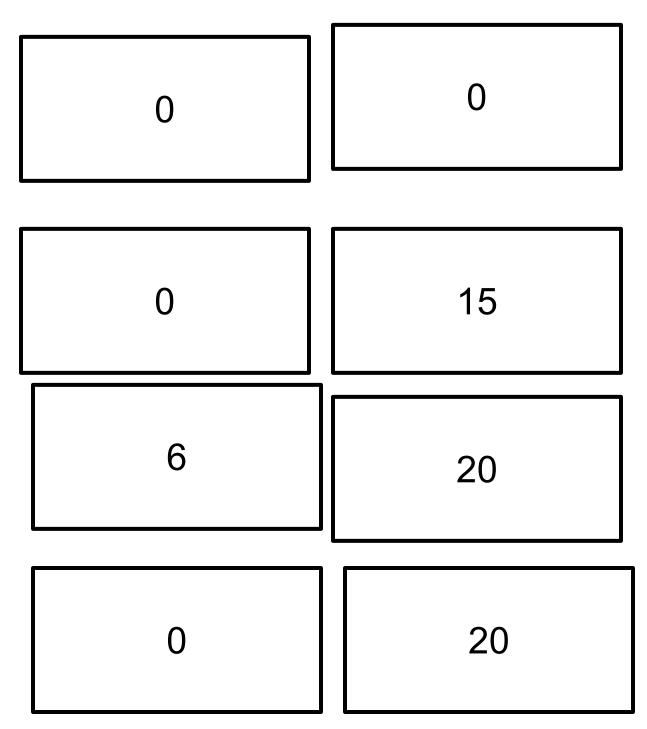
Goal 2 – Identify the values for which the conjecture is true	
 Discuss: For what numbers do you think your conjecture is true? (Follow-up prompts:) Do you think it is true for all numbers or just some numbers? Which ones? How do you know? 	

Additive Inverse - Part 2

Lesson Objective: Generalize, represent, and reason with Additive Inverse				
	Goals &Tasks	Comments		
Goal 3	Goal 3 - Identify values for which the conjecture is true			
	ss: hat numbers do you think your conjecture is true? <i>w-up prompts:</i>) Do you think it is true for all numbers or just some numbers? Which ones?	Review the conjecture students developed and their responses in the previous lesson regarding the numbers for which the conjecture is true. List students' ideas of numbers for which conjecture is true to motivate the concept that the conjecture is true for "any number".		
Goal 4	Goal 4 - Represent the generalization using variables and examine the meaning of repeated variables in the same equation			
paper f didn't 1.	em: Barbara started writing an equation on her that her teacher was writing on the board. She get to finish. The following is what she wrote: $0 = _$ What number(s) could Barbara have put in the missing places of the equation to make the equation true? What can you say about the numbers that go in the missing places?	Whole-class discussion (??): 1. Ask students what they think the equation says (i.e., do they see it as "some number minus itself is zero"). Systematically list different possibilities: 0 = 1 - 1 0 = 2 - 2, etc (This serves as a way to get kids to generalize a pattern to		
3.	How could we represent any number here?	represent any number and also reviews work with equations.)		
4.	What does your letter represent?			
5.	If we have to put the same number in the missing places, do you think we should use the same letter or different letters? Why?	2. The goal is for students to notice that <i>any</i> number can be put in the missing places, but it must be the same number.		
		4. Introduce mathematical convention that we can use a letter to represent any number. Discuss choice of letter and		

	same letter. Discuss convention of same number, same letter.	
Goal 5 - Identify the generalization (e.g., property) in use when doing computational work		
 Problem: Caroline has some cookies in her lunch box. She gave them all to her friend, Ava, during recess. 1. How many cookies does Caroline have now? How do you know? 2. Write an equation to show what happened. 	Discuss what is known about the number of cookies Caroline has. If students have trouble, use specific numbers to scaffold their thinking. Question students to see if they notice "any number minus itself is zero" applies to this problem. Can they model the situation with an equation such as $a - a$ = 0?	

Game: Find the Missing Number


Group 1:

<u>Group 2:</u>

Commutative Property of Addition - Part 1

	lengths except for those with the same summands.	
	Develop discussion to the point that students see that $3 + 4 = 4 + 3$; write all such pair equations on the board (e.g., $2 + 6 = 6 + 2$, etc.)	
 Game: Find the Missing Number Value of the Letter (open equations using Commutative Property of Addition) Discuss: Do you notice anything special happening in these equations? (Follow-up prompts: What do you notice about what happens when you switch the order of the numbers you are adding? How would you describe this to a friend? 	Game: Divide the class into two groups. In one group, give each student a card with an open equation. In the other group, give each student a card with a number on it. Students should find their partner so that their cards match (equation with correct missing number). Discussion: Show the matches on the board. Students discuss why their cards match – what the equations say and what '=' means. Develop a conjecture for Commutative Property or reinforce conjecture developed with Snap cube trains problem.	
Goal 2 – Identify the values for which the conjecture is true		
 Discuss: For what numbers do you think your conjecture is true? (<i>Follow-up prompts:</i>) Do you think it is true for all numbers or just some numbers? Which ones? 		

How do you know?	
------------------	--

Commutative Property of Addition - Part 2

Lesson Objective: Generalize, represent, and reason with Commutative Property of Addition			
Goals &Tasks	Comments		
Goal 3 - Identify values for which the conjecture is true			
 Discuss: For what numbers do you think your conjecture is true? (<i>Follow-up prompts:</i>) Do you think it is true for all numbers or just some numbers? Which ones? How do you know? 	Review the conjecture students developed and their responses in the previous lesson regarding the numbers for which the conjecture is true. List students' ideas of numbers for which conjecture is true to motivate the concept that the conjecture is true for "any number".		
Goal 4 - Represent the generalization using variables and examine the meaning of repeated variables in the same equation			
Recall Snap Cube Train: 4 + 3 = 7 $3 + 4 = 7$			
 Recall 3+4=4+3, 2+6=6+2 (etc., whatever snap cube trains reflect) 1. What was our conjecture about the order in which we add two numbers? 2. Can you write an equation of your own that shows this? 3. Problem: Kimy wrote a problem down that her teacher was writing on the board. She didn't finish writing it down before the teacher erased it. Here's what she wrote: 	2. Notice whether they have the correct structure of $a + b =$ b + a. Write all the equations on the board.		
	For 3 , have a conversation to		

$5 + _ = _ + 5$ What could have been written in the blanks to make the equation?	develop the idea that any number could be used and that the representation for any number is a letter.	
Extend this to any two numbers to develop Commutative Property		
Goal 5 - Identify the generalization (e.g., property) in use when doing computational work		
Problem: Marcy's teacher asks her to solve "23 + 15." She adds the two numbers and gets 38. The teacher then asks her to solve "15 + 23." How would you tell Marcy to solve this problem?	Do students recognize the commutative property and apply this here?	

Game: Find the Value of the Letter

Group 1:

$$2 + a = 4 + 2$$

$$11 + 0 = b + 11$$

$$c + 3 = 3 + 4$$

$$1 + 2 = 2 + d$$

3 + 2 = e + 3

$$10 + 1 = m + 10$$

$$8 + 0 = n + 8$$

$$25 + 2 = 2 + s$$

$$9 + s = 1 + 9$$

Candy Box Problem – Part 1

	Tasks		Comments
how n	em: Jack has a box of candies. He's not sure hany pieces of candy are in his box. His mother him 2 more pieces.	1.	Have a whole class discussion of what children
•	re & Record		know about the situation.
1.		2.	Ask children to work individually to represent the situation on their own. Discuss children's drawings and what children intend
2.	Can you draw a picture to represent this situation?		that they represent.
3.	What could you tell me about Jack's total number of candies if he had 3 (4, 5, 6) in his box? Can you write an expression to show how you got your answer?	4.	To keep track of the exploration, construct a table comparing how many candies Jack has in box and how many total candies he has when his mother gives him 2 more pieces. Ask children to offer possible
4.	Can we record what we know so far about the number of pieces of candy Jack has in his box and how many he has altogether?		mathematical expressions/equations to represent the number of pieces of candies. This should help them represent the general form later.
5.	How would you describe the number of pieces of candy Jack has?	5.	Encourage children to generalize using their own words.
6.	How can we represent the number of candies in Jack's box?	6.	Explore how to represent an unknown quantity. Refer
	How can we represent Jack's total number of candies?		back to the table so that students can generalize the pattern in the expressions. Discuss the letter students choose and why. Discuss what they think the letter represents.

Candy Box Problem – Part 2

Lesson Objective: Generalize, represent, and reason with arithmetical operations (focused on addition, but possibly exploring subtraction with some students)		
	Tasks	Comments
in it, b penny	em: Angela has a piggy bank with some pennies ut she doesn't know how many. She has 1 more in her hand. What do we know about the number of pennies	Have students work on this in partner groups using "turn and talk" (since kindergartners will have trouble reading/writing)
	Angela has in her bank? What do we not know?	Discuss 1. Briefly with students before they go into partner groups.
Explo	re & Record	groups.
2.	Draw a picture to represent Angela's total number of pennies.	Students do 2. Individually. Discuss students' representations.
	How many pennies do you think are in the bank? Why? How certain are you?	3. (turn and talk) Discuss the representation. Discuss use of letters, what the letter represents
3.	How can we represent the number of pennies in Angela's bank?	to students, and why they chose that letter.
	How can we represent Angela's <i>total</i> number of pennies?	
	What does the letter you used represent?	
	What are possible values of your variable/letter? Why?	
	em: Ben has some trucks in his collection. He is re how many he has.	Work in partner groups.
1.	How would you represent the number of trucks Ben has?	
2.	Ben's mom gives him 3 more trucks for his birthday. Write an expression to represent the total number of trucks Ben now has.	
3.	What does the variable in your expression represent?	

Exploring Evens and Odds - Part 1

Lesson Objective: Generalize properties of even and odd (parity), make conjectures about addition of even and odd numbers, reason about numbers based on their parity.		
Tasks	Comments	
Goal 1 – Recognize and define "even" and "odd." Generalize (parity)	e properties of even and odd	
Numbers can be represented by pairs of objects: In our lessons and in your class, we have been looking at how to make numbers by combining two numbers together and how a whole can be thought of as made up of parts. [like when they make number bond diagrams]	Math in Focus (MIF): uses "number bonds" to represent composition and decomposition of numbers. Used in first grade and second grade. Unknown about kindergarten (ask Oscar)	
Today, we are going to look at how numbers can be made up of pairs. -Has anyone hear the word "pair" before? How many is a pair? -(pair of shoes, pair of earrings, pair of mittens) [Students should arrive at the idea that a pair is the same as two]	6 4 2 Materials -magnetic white board	
 So, if I take a number like 8, can we make it into pairs? -Count out 8 magnets, put them on the board in loose arrangement, -Put them into pairs, describing what you are doing as you do so, -Check for understanding of showing a number as pairs, -Demonstrate how to fill in the worksheet for the number 8. 	 -magnetic winte board -small magnets (like foam mosaic) -worksheet - a set of number cards with one value on each card (in the range from 4 to 15; use the range of 2 to 9 for K) (the number cards are just a way to pick which numbers the students will model) 	
Hand out worksheet, give each student a number to figure out. Now you are going to find the pairs in a number. You can use [snap cubes] if you want or record directly on the worksheet. (worksheet is at the bottom of this document).	Start as whole group to introduce their task, it moves relatively quickly into describing the task and handing out the student worksheet.	
Checking work with each other: -Show me you are finished by (<i>standard classroom</i>	Final definitions from Keith, 2006:	

<i>practice),</i> and wait patiently until everyone is done.	
-Some of you created pairs out of the same number.	Even numbers:
Let's get you together to check your work before we	-Even numbers won't have
review it as a group.	any left over when divided
	by two.
Review student answers by looking over	-Even is when you have an
worksheets together & modeling some of the	amount that two people
numbers on the board.	can share and each person
numbers on the board.	-
	will have the same
Define "even" and "odd" classes of numbers	amount. It will be fair.
Numbers that can be made into pairs with no leftovers	
are called "Even numbers"	Odd Numbers:
Numbers that have a leftover when they are made into	-Odd numbers cannot be
pairs are called "Odd numbers"	divided into two groups
	that are equal without
How would you test if something is an even number?	splitting or having one left
now would you test it something is an even number.	over.
II	01011
How would you test if something is an odd number?	-With an odd number you
	will have one left over
	after dividing by two when
	all numbers are kept
	whole.

Goal 2 – Generalize the result of adding of two even numbers

Leave examples of even numbers on the board,	Capture the students
remove the examples of odd numbers and ask,	conjectures on the board below
"What happens if we take two of our even numbers	the list of numbers.
and add them together? Can we make a conjecture	
about what the results will be? How do you know?"	
As a group, do some examples that stay within the 1 –	
20 answer range; write them as number sentences on	
the board; model with magnets	
Explore this situation with the students:	
-	
There is a snowball dance and every snowman	
needs a partner to dance with. A sleigh of 6	
snowmen arrive at the dance first. How many	
snowman can arrive in the next sleigh so that	
everyone has a partner? Is there more than one	
answer to this question?	
What if 5 snowman arrive in the second sleigh, will	
what it 5 showman arrive in the second stelgh, whi	

everyone have a partner?	

Exploring Even and Odds - Part 2

Lesson Objective: Generalize properties of even and odd (parity), make conjectures about addition of even and odd numbers, reason about numbers based on their parity.		
Tasks	Comments	
Goal 3 – Generalize about properties of adding: two odd numbers		
Review the work of Day 1: Ask for share-outs of the work that was done in the last session: -Showing numbers as pairs -Definitions of evens and odds (model an even number and odd number) -what happens when we add two even numbers together. -The Snowball Dance		
Does anyone have any questions about what we did yesterday? Is there anything that you curious about based on what we discovered?Hopefully, there will be a few questions about adding odd and odd together or adding even and odd together.		
What if we add two odd numbers together, what do you think is going to be the result? Can we make this a conjecture? Why do you predict that results? Will it always be true? How do you know?		
Hand out worksheet for students to do some sums (below)		
Do the answers on their worksheet match the conjectures that were made?		

What if we add an odd number and an even number together, what do you think is going to	
be the result?	
Can we make this a conjecture?	
Why do you predict that results?	
Will it always be true?	
How do you know?	
Hand out worksheet for students to do some sums (below)	
Do the answers on their worksheet match the conjectures that were made?	

Extensions to Even/Odd

Lesson Objective: Apply the generalizations they have made to new contexts	
Tasks	Comments
Goal 6 – Apply generalizations about the properties of sums of ev problem"	ens and odds in a "thinking
Give the students a worksheet with the problem, read the problem aloud, then have them work on it for 8 minutes (suggest they can get cubes or sticks if they want); come back to the rug to discuss.	
PROBLEM: 1st Grade Version: Toby had two bags of candy. None of the bags had an even number of candies in it. Toby counted 16 pieces of candy in total.	
Please consider how to decide if he counted correctly. You can draw, use cubes or talk with a partner.	
Did he count right? How do you know?	
Kindergarten version: Toby had two bags of candies. Both bags had an even number of candies. Is it possible that there are 13 candies total? How do you know?	

WORKSHEETS START HERE

Name:

Date:_____ Worksheet 1 for Part 1

My number is: _____

Color in the same number of squares as this number:

Color in the same number of squares as this number:

Name:_____

Do these sums, model the answer by coloring in the total number of squares:

3 + 5 = _____

What happens when two odd numbers are added together? Use numbers, pictures, or words to explain. Name:_____

Date:_____ Worksheet 2 for Part 2: odd + even

Do these sums, model the answer by coloring in the total number of squares:

5 + 4 = _____

What happens when an odd number is added to an even number? Use numbers, pictures, or words to explain.

Name:	Date:
-------	-------

Kenji has M&Ms, lollipops, gumballs, and Hershey Kisses. He doesn't have an even number of any of the candies. Kenji counted 31 pieces of candy.

Did he count right? How do you know?

Name:	Date:
-------	-------

Shari had three bags of candy. None of the bags had an even number of candies in it. She counted 16 pieces of candy in total.

Did he count right? How do you know?

Name: D	ate:
---------	------

Toby had two bags of candies. Both bags had an even number of candies. Can there be 13 candies total?

