Seasonality in Food Prices and the Cost of a Nutritious Diet in Tanzania

Yan Bai, Elena N. Naumova, William A. Masters
Friedman School of Nutrition Science & Policy, Tufts University

Presenting Author: Yan Bai, PhD Candidate

American Society for Nutrition's NUTRITION 2018
Barriers and Opportunities for Improving Diets and Food Choices
June 12th 2018, Boston
Faculty Disclosure

<table>
<thead>
<tr>
<th>Financial Relationship (prior 12 months)</th>
<th>Commercial Interest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grant/Research Support</td>
<td>Project CADASA jointly funded by the UK Department for International Development and the Bill & Melinda Gates Foundation</td>
</tr>
<tr>
<td>Scientific Advisory Board/Consultant/Board of Directors</td>
<td></td>
</tr>
<tr>
<td>Speakers Bureau</td>
<td></td>
</tr>
<tr>
<td>Stock Shareholder</td>
<td></td>
</tr>
<tr>
<td>Employee</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>
Outline

1. Introduction
2. Methods and Data
3. Results
4. Conclusions
5. Limitations and Next Steps
Introduction

- Tanzania, one of the poorest countries in the world: both nutrition and poverty challenges
 - 68% of the population living below poverty line of $1.25
 - 42% of children under 5 were stunted in 2010
 - Anemia: 59% among children, and 41% among women

- Rising food prices may further threaten nutrition security
 - Reduce access to (nutritious) foods with greater effect on food consumption /nutrition and health status in lower-income countries/HHs (Green et al., 2013; Brinkman et al., 2010)
Introduction (cont’d)

- Seasonality is a key predictable component of food price variations
 - Tanzania: significant seasonal fluctuations in food market prices and food consumptions (Kaminski et al. 2016)

- Previous work on major staples or food expenditure. How about other foods? Diets?
 - We compare seasonality in food prices of all major food groups, and also the cost of diets (Masters et al. 2018)
 - Distinguish *Nutrient Adequacy* from *Caloric Adequacy*
 - Cost of Nutrient Adequacy, *CoNA*
 - Cost of Caloric Adequacy, *CoCA*
Least cost diet method for both CoNA and CoCA

- Cost of Nutrient Adequacy (CoNA)
 \[\text{min} C_{kt} = \text{min} \sum p_i x_{qi}, \text{ where } \sum n_{ij} x_{qi} \geq \text{EAR}_j \text{ and } \sum n_{ie} x_{qi} = E \]

- Cost of Caloric Adequacy (CoCA)
 \[\text{min} C_{kt} = \text{min} \sum p_i x_{qi}, \text{ where } \sum n_{ie} x_{qi} = E \]

Harmonic/trigonometric model for seasonal component of month-to-month changes

- Individual foods
 \[\ln(C_{ikt}) = \alpha_0 + \beta_{s} \sin(2\pi\omega t) + \beta_{c} \cos(2\pi\omega t) + \beta_{t} T(t) + \gamma_j Y_j + \theta_k R_k + e_{ikt} \]

- Diet-cost indexes
 \[I_{kt} = \alpha_0 + \beta_{s} \sin(2\pi\omega t) + \beta_{c} \cos(2\pi\omega t) + \beta_{t} T(t) + \gamma_j Y_j + \theta_k R_k + e_{kt} \]

- Present the amplitude and peak timing (Naumova et al., 2007)
Methods and Data (cont’d)

- Monthly prices for 49 foods in local markets across 21 regions
 - January 2011 through December 2015
 - Collected by field agents for the National Bureau of Statistics (NBS)

- Food Composition Datasets
 - National Nutrient Database for Standard Reference (USDA)
 - West African Food Composition Table (FAO)

- EARs for 17 Nutrients from IOM
 - Protein plus 7 minerals (Ca, Fe, Mg, P, Zn, Cu, Se) and 9 essential vitamins (A, C, E, Thiamin, Riboflavin, Niacin, B-6, Folate, B-12).
Results — Seasonal variation and peak timing of the cost of individual foods, 2011-15

- Significant seasonal variations in 46 of 49 foods
 - F&V has the sharpest seasonality
 - They also have the highest food prices per calories
- Seasonality of individual food price = seasonality of cost of diets?

Note: data shown are 95% confidence intervals as bars for the peak timing. The color gradation shows the estimated seasonal variations in monthly price of each food item at 21 market locations across the nation. The side graph on the top shows the average monthly rainfall between 1991 and 2005, and the side graph to the right displays the average monthly price per 1,000 kcal and the standard deviation of each food item. The seasonal variations for 8 food items were not significant, including finger millet, white maize, dried sardines, egg plants, apples (imported), bitter tomatoes and cooking oil (varieties) and cooking fat.
Clear seasonal pattern in the cost of nutrient adequacy (CoNA)

- People may suffer even higher costs and stronger seasonal changes to maintain a nutritious diets

Peak time of CoNA in March is one month later than the peak of CoCA

- Variation in seasonality drives fluctuations in the cost of meeting micronutrient needs through F&V

Note: error bars show 95% confidence intervals of the relevant estimates. At a significance level of 5%, dash line indicates that the seasonality of CoCA is not significant, while solid line indicates that the seasonality of CoNA is significant.
Results – Regional Variations of CoNA and the Important Role of Nutrient-Rich F&V

Fig 3. Seasonal Variation of 21 Regional CoNA indexes, 2011-15

Fig 4. Correlation Coefficient of Prices among 6 Food Groups and CoNA

Note: data shown are 95% confidence intervals as bars for the peak timing. The color gradation shows the estimated seasonal variation in the regional CoNA indexes. The seasonal variations for 3 regions were not significant, including Dodoma, Mara and Arusha.

Note: Nutr F&V is the abbreviation of Nutrient-rich Fruits and Vegetables. Other F&V is the abbreviation of Other Fruits and Vegetables. CoNA and CoCA are the indexes representing the cost of nutrient adequacy and the cost of calorie adequacy. Blue circles indicate the prices of the two food groups or indexes on horizontal and vertical directions are positively correlated, red circles indicates that they are negatively correlated at the significance level of 0.05. Nonsignificant correlation is shown as an “X” symbol in the figure.
Conclusions

- **Seasonality widely exists in retail food prices in Tanzania**
 - F&V has the most extreme seasonality, with different seasonal peaks according to the harvest timing;

- **Seasonal fluctuation has been observed in the least cost of nutritious diet in Tanzania**
 - Allowing people to substitute freely among foods as prices vary, the lowest possible expenditure needed to meet all nutrient needs has significant seasonality
 - The cost of calories as such fluctuates less predictably
Regional variations of CoNA is striking

- CoNA’s seasonal peak is at the end of the rainy season in March/April with exceptions like Kilimanjaro around July
- Price gap between annually seasonal peak/bottom prices can be over 15 US cents like Kilimanjaro

F&V price is a key driver of the seasonal change in CoNA

- Each region’s cost of nutritious diets is highly correlated with seasonality in prices of its nutrient dense F&V
- More targeted investments in market infrastructure for storage and transport of those foods among markets over time to lower and smooth the cost of nutritious diets
Limitations and Next Steps

- **Price data were collected in principal food markets in each region**
 - Seasonal scarcity at even more remote locations is likely to be even more severe, for which additional data on local prices would be needed

- **Next steps**
 - Method to be applied in other developing countries with different development status and evaluate various food systems
 - To investigate whether, or by how much, market infrastructure may affect the level and seasonality of the costs of individual foods, as well as the cost of nutritious diets
Thank you!

This work is funded by UKAid and the Bill & Melinda Gates Foundation (OPP1182628).

Model code and data for replication of results will be available on that project’s website at http://sites.tufts.edu/candasa

All results depend on price enumerators!

Photo: Anna Herforth, 2017
Appendix: 21 Regional CoNA Index in Tanzania, 2011-2015
Appendix: 21 Regional CoCA Index in Tanzania, 2011-2015

