

Thromboembolism and Antithrombotic Therapy

Created by V'22 cardio group revised from Dr. John Rush

Last Updated 06/29/20

Thrombosis: disease state, abnormal blood clots present in body

Thromboembolism: thrombi have broken free from the site at which they formed \rightarrow embolize downstream location

Thrombosis

_

Virchow's Triad: composed of the following 3 factors. Any one (or multiple) can predispose an individual to thrombosis

- Endothelial injury
 - \circ Surgery
 - o **Trauma**
 - Thermal injury
- Circulatory stasis
 - o Polycythemia
 - Intracardiac distension
 - \circ $\;$ Low cardiac output $\;$
- Altered coagulability
 - o DIC
 - Depletion of antithrombotic factors

Mechanisms of Thrombosis

- Platelet Adhesion: typically, in area of damaged arterial endothelium or on artificial surface (i.e. implants, prosthetics)
- Platelet aggregation: due to rise in platelet intracellular calcium as a response to collagen exposure, vascular injury, thrombin, serotonin, thromboxane A2
 - Can initiate thromboxane synthesis and platelet activation through arachidonic acid release
- Activation of clotting mechanisms → generation of thrombin after activation of platelet membrane
 - Thrombin enhances activation of platelet membrane & plays a key role in coagulation
- Platelet and vascular contraction: during activation, serotonin (and other vasoactive agents) are released from platelets, promoting formation of a <u>hemostatic plug</u>
 - If endothelium is intact serotonin will promote vasodilation
 - If endothelium is damaged serotonin will promote vasoconstriction
 - Other vasoconstrictors include inflammatory mediators (i.e. leukotrienes released from white cells, tissue macrophages) \rightarrow vascular stasis

- Fibrinolysis: breakdown of fibrin (via plasminogen \rightarrow plasmin) is initiated at the same time as clotting mechanisms are activated
 - Plasmin = enzyme responsible for hydrolysis of fibrin

Systemic Thrombosis/Thromboembolism

Feline arterial (systemic) thrombosis/thromboembolism

- Associations
 - Feline aortic thromboembolism (ATE/FATE): common, devastating sequelae to feline cardiomyopathy
 - o Intracardiac thrombosis with subsequent embolization major cause
 - Neoplasia (esp. pulmonary carcinoma) maybe 5% of cases
- Pathophysiology
 - $\,\circ\,\,$ Intracardiac thrombi formation may relate to pathologic changes \rightarrow exposure of thrombogenic surfaces
 - Chamber dilation, valvular regurgitation, partial outflow obstruction in cases of extreme hypertrophy \rightarrow alterations in blood flow
 - o DIC and other coagulopathies are reported in cats with ATE
 - Feline platelets = more reactive than other species
 - \circ Interrupted blood flow past the distal aorta \rightarrow ischemic myopathy & neuropathy
 - Humoral agents released from the blood clot (thromboxane, endothelin, serotonin, etc.) play an important role in the pathophysiology
- Clinical presentation
 - Distal aortic thromboembolism (aka "Saddle Thrombus") occurs in >90% of cases. Common, especially in cats with known myocardial disease
 - Clinical signs
 - Posterior paresis/paralysis
 - Loss of femoral pulses
 - Cool posterior extremities
 - Cyanotic/pale rear-limb paw pads
 - Cyanotic nail beds that do not bleed
 - Firm, painful gastrocnemius muscles
 - Vocalization (presumably due to pain)
 - Simultaneous onset of acute CHF is common
 - Weakness
 - Dyspnea
 - Pulmonary edema
 - Sudden death due to coronary thromboembolism/thrombus occluding LVOT is possible
 - Diagnosis
 - Can be first presenting evidence of cardiovascular disease (heart disease was previously undetected)

- Usually clinical signs are clear enough to make a diagnosis
- Differentials
 - o IVDD
 - o FCE
 - Spinal lymphoma
 - o Trauma!!
- Cardiomyopathy signs may be present
 - Jugular distension
 - o Murmur or arrhythmia
 - o Gallop sounds
- CHF signs may be present
 - o Dyspnea
 - \circ Tachypnea
 - \circ Weakness
 - o Pulmonary crackles
 - o Cyanosis
- Further workup
 - Thoracic radiographs
 - \circ ECG
 - o NT-proBNP
 - o Echo
- <u>Nonspecific angiography of aorta is also diagnostic</u> can localize thrombus and evaluate collateral circulation (is usually NOT necessary/indicated though)
- Ancillary testing may indicate -
 - Muscle injury → enzyme release: Increased CPK, ALT, AST, LDH
 - Stress: leukogram, hypoglycemia
 - o DIC
 - o **Hypoxemia**
- Therapy
 - Goals: supportive treatment of acute syndrome, relief of CHF, attempt to remove thrombi, establish collateral circulation
 - If CHF present
 - o Oxygen
 - o Diuretics
 - +/- ACE inhibitors or pimobendan
 - AVOID propranolol and probably other beta-blocker (low cardiac output altered vasomotor tone may reduce blood flow to tissues at risk)
 - Analgesics (i.e. fentanyl, buprenorphine, or other narcotics)
 - Anticoagulation with heparin to prevent additional thrombosis

- O Heparin can also activate plasminogen → enhanced thrombolysis (unproven but suggested)
- Antiplatelet drugs in <u>acute</u> management
- Surgical embolectomy = high mortality rate. Reperfusion injury and decompensated condition of the patient at time of surgery. If done should likely be done early, within the first few hours of ATE
- Vasodilators (i.e. acepromazine or hydralazine) to induce collateral circulation
 - MAP = a KEY determinant of collateral flow!
 - These drugs can drop BP, and might reduce blood flow or limit opening up of collateral vessels
 - Efficacy not established
- Thrombolytic therapy (streptokinase, urokinase, or tissue plasminogen activator)
 - Common consequences of clot lysis include reperfusion injury (hyperkalemia and metabolic acidosis) and bleeding consequences can also happen with thrombolytics
 - Goal: early return of blood flow to tissues with compromised perfusion that are NOT yet necrotic
 - If thrombolytics are used should be started within 12 hours, ideally within 1 hour of onset of clinical signs
- Prevention
 - Optimal therapy = cure underlying disease (i.e. DCM due to taurine deficiency)
 - Aspirin, heparin, LMWH, clopidogrel, Coumadin (warfarin)
- Prognosis
 - Devastating complication of feline myocardial disease
 - Median survival time = 61 d. 11 mo. (if cat is not euthanized at time of presentation)
 - Repeated thrombosis is possible
 - Most common cause of subsequent death in treated cats = CHF
- Other clinical syndromes due to occlusion of -
 - Mesenteric artery
 - Renal artery
 - Hepatic artery
 - Splenic artery
 - Ovarian artery
 - Forelimb arteries (right forelimb may be more common than left forelimb; these often get better and cats usually will walk again)

Canine systemic thrombosis/thromboembolism

- Much less common in dogs
- Many cases are NOT of cardiogenic origin (rather due to systemic disease, develop in situ)
- Associations
 - Vascular disease
 - Arteriosclerosis
 - Vasculitis
 - Trauma
 - IV injection of an irritating/hypertonic substance
 - Neoplastic invasion
 - Bacterial endocarditis
 - Vascular stasis
 - Hypovolemia
 - Shock
 - Cardiac failure
 - Vascular compression
 - Hypercoagulability
 - Antithrombin III deficiency
 - Platelet disorders
 - Dehydration
 - Hyperviscosity
 - IMHA
 - Being a greyhound
 - Thrombotic events from sources in the veins (if ASD), cardiac valves/chambers
 - o Introduction of foreign substances by trauma or iatrogenically
- Clinical presentation
 - Signs dependent on site of thrombosis, degree/duration of occlusion, and composition of thrombus
 - Some thrombi will NOT \rightarrow clinical disease
 - In the dog saddle thrombus can → posterior weakness/lameness ONLY (especially if partial or intermittent obstruction occurs; common when the thrombus develops in situ in the distal aorta)
 - Femoral pulses = weak to absent, hind limbs may be cool
 - Front limb thrombosis = LESS dramatic, unilateral
 - Endocarditis may \rightarrow septic embolization of 1+ organ beds (kidneys, gut, liver, spleen, heart, spinal cord, brain)
 - Clinical signs are dependent upon which site is affected
- Diagnosis
 - Radiographs of thorax/abdomen may suggest underlying disease
 - Dirofilariasis
 - Neoplasia
 - Cardiomegaly

- Radiopaque foreign object
- o Laboratory tests may suggest systemic disease
 - Elevated hepatic/pancreatic enzymes
 - Azotemia
 - Proteinuria
 - Hematuria
 - Leukocytosis
 - Hypoproteinemia
 - Microfilaremia
- Echo or abdominal ultrasound may be useful, based upon clinical signs
 - i.e. visible thrombus in abdominal aorta or iliac arteries
- Angiography or CT of selected area could reveal lesions
- Treatment: newer anticoagulants and Coumadin MAY be most effective!
 - Correct underlying abnormality
 - Supportive therapy
 - Rehydration
 - Analgesics
 - Prevent thrombus enlargement
 - Heparin
 - Antiplatelet drugs
 - Coumadin or newer drugs like direct acting Factor anti-Xa inhibitors like rivaroxaban or apixaban may be the best approach!!
 - Thrombolytic therapy
 - Surgical embolectomy
- Prognosis is dependent upon underlying disease (usually guarded). Thrombosis recurrence is <u>common</u>

Pulmonary Thrombosis/Thromboembolism

- Associations
 - Dirofilariasis: heartworm is a well-documented cause of PTE
 - \circ Nephrotic syndrome: proteinuria \rightarrow loss of antithrombin
 - Autoimmune hemolytic anemia: many patients will succumb to PTE
 - o Other causes of antithrombin deficiency
 - Hyperadrenocorticism
 - Hypothyroidism
 - Pancreatitis
 - DIC
 - Etc.
 - Deep vein thrombosis (esp. in people): thrombi embolize to the pulmonary circulation
- Clinical Presentation
 - Signs are nonspecific, mimic other cardiorespiratory diseases

- Acute onset of dyspnea common***
- Diagnosis = difficult at best
 - Acutely ill patient, could succumb from diagnostic testing alone
 - Suggestive findings
 - Arterial hypoxemia (PaO2 < 80 mmHg)
 - Thoracic radiographs are NOT always suggestive of cardiorespiratory disease
 - Sometimes normal
 - Changes that MAY be seen include
 - Pulmonary vessel size change
 - Lobar lucency
 - Small vessels in area that is affected by thrombus
 - o RVE
 - Pulmonary infiltrates
 - Pleural effusion
 - Pulmonary angiography: injection of contrast may demonstrate filling defect in pulmonary artery OR a complete interruption of blood flow
 - Negative study = significant disease is NOT present
 - CT scan of thorax with contrast: currently the <u>best diagnostic test for PTE.</u> Can see the thrombus in the PA.
- Prevention: prophylactic therapy may be initiated if patient is predisposed to PTE (sepsis, neoplasia, prolonged recumbency, IMHA). Treat underlying disease/condition
- Treatment
 - Support with oxygen
 - Fluid support to maintain circulation
 - Heparin or LMWH
 - Antiplatelet drugs
 - \circ Coumadin
 - +/- Newer anticoagulants like direct acting Factor anti-Xa inhibitors (rivaroxaban or apixaban), Thrombolytics in acute setting
- Prognosis: poor guarded in severely ill patients requiring oxygen supplementation

Therapeutic Modalities for Thrombotic Diseases

Antiplatelet therapy: reduces platelet aggregation \rightarrow altered thrombus formation. Prevention of vasoconstriction due to platelet release of substances (i.e. serotonin, PDGF)

- Aspirin (acetylsalicylic acid): blocks PG synthesis by irreversibly acetylating & inactivating COX.
 - The production of thromboxane is blocked
 - Prostacyclin synthesis (a vasodilator) is blocked simultaneously \rightarrow potential consequences of vasoconstriction & vascular stasis

- BUT endothelial cells are able to produce prostacyclin within hours, so the antithrombotic effects predominate. Platelet inhibition = low doses
- Used in cats with significant myocardial disease to <u>prevent</u> thromboembolic events
- Side effects
 - GI distress
 - Potential for gastric ulceration/bleeding
- Clopidogrel (Plavix): good antiplatelet therapy in most animals, less SE than aspirin

Anticoagulation therapy: prevent thrombus formation

- Heparin (IV or SC): enhances the activity of antithrombin
 - Antithrombin = protease inhibitor found in normal plasma
 - Heparin-antithrombin complex will neutralize proteases formed during coagulation – i.e. <u>thrombin</u> (IIa)
 - \circ Increases plasminogen activator \rightarrow activation of fibrinolysis
 - Must give parenteral via IV CRI or frequent SC injections
 - Can use prior to starting a long-term therapy (i.e. warfarin) to initiate anticoagulation
 - Therapeutic dosage monitored via PTT levels
 - PTT increase 1.5X baseline or normal indicates the drug is working
 - $\circ \quad \text{Bleeding is a significant complication}$
 - Protamine sulfate = antidote
 - High side effect potential in dogs
- Low-Molecular weight heparin: prevent thrombus formation
 - o i.e. enoxaparin (Lovenox) and dalteparin (Fragmin)
 - Require SC injection of small volumes
 - Longer half-life than unfractioned heparin only give 1-3X daily
 - \circ $\;$ Much more expensive than unfractioned heparin
 - \circ Used for more chronic use (mo. yr.)
 - Low MW fragments have a HIGH affinity for antithrombin III, inhibit factor X strongly, do NOT inhibit thrombin, and do NOT have a strong tendency to cause hemorrhage
- Coumadin (Warfarin derivative): vitamin K-dependent anticoagulant
 - Prothrombin = coagulation factor dependent on vitamin K for synthesis
 - Can give orally, long-term prevention of thromboembolism
 - Inhibit the synthesis of coagulation factors are NOT immediately active in vivo
 - Also decreases levels of protein C (antithrombotic agent) so give with heparin for immediate therapy and to <u>avoid an initial hypercoagulable state</u>
 - PT is suggestive of drug efficacy 2X increase from baseline. Monitor every 3-5
 d. for 4-6 wk., then every few weeks while administering this drug
- Newer anticoagulants: i.e. Rivaroxaban or apixaban these drugs will likely replace Coumadin in the future

Thrombolytic therapy: treatment of acute thrombosis and arterial occlusion

- Dependent on presence of circulating plasminogen
- Plasmin = protease which cleaves circulating proteins, including fibrinogen, plasminogen, and also plasmin.
 - $\circ~$ Fibrinogen degradation \rightarrow fibrin degradation products (FDPs), which are anticoagulants
 - Excess concentration of plasmin due to generalized fibrinolysis activation (systemic fibrinolytic state) can → accumulation of plasmin, excessive fibrinolysis, bleeding
- Streptokinase: produced by Beta-hemolytic Streptococcus
 - Must be given in animals with plasminogen or plasmin BEFORE it can activate plasmin
 - Currently unavailable
- Urokinase: enzyme produced by human kidney cells, cleaves plasminogen
 - o <u>Theoretical</u> advantages: preferential affinity for tissue plasminogen
 - o Administered systemically or locally (intra-arterially)
 - Currently unavailable
- Tissue plasminogen activator (t-PA): an intrinsic (nonantigenic) protein of all mammals
 - Low affinity for circulating plasminogen BIG advantage because it may allow systemic administration without induction of a systemic fibrinolytic state (will ONLY act on clots theoretically, but bleeding side effects are still possible)
 - \circ $\,$ Complications in cats with ATE $\,$
 - "Reperfusion syndrome" with hyperkalemia and metabolic acidosis
 - Bleeding complications
 - Neurologic signs
- Surgery (embolectomy): not common in vet med
 - o Is not stated to improve clinical outcome
 - One recent case report