Thromboembolism and Antithrombotic Therapy

Created by V’22 cardio group revised from Dr. John Rush

Last Updated 06/29/20

Thrombosis: disease state, abnormal blood clots present in body
Thromboembolism: thrombi have broken free from the site at which they formed → embolize downstream location

Thrombosis

Virchow’s Triad: composed of the following 3 factors. Any one (or multiple) can predispose an individual to thrombosis
- Endothelial injury
 - Surgery
 - Trauma
 - Thermal injury
- Circulatory stasis
 - Polycythemia
 - Intracardiac distension
 - Low cardiac output
- Altered coagulability
 - DIC
 - Depletion of antithrombotic factors

Mechanisms of Thrombosis
- Platelet Adhesion: typically, in area of damaged arterial endothelium or on artificial surface (i.e. implants, prosthetics)
- Platelet aggregation: due to rise in platelet intracellular calcium as a response to collagen exposure, vascular injury, thrombin, serotonin, thromboxane A2
 - Can initiate thromboxane synthesis and platelet activation through arachidonic acid release
- Activation of clotting mechanisms → generation of thrombin after activation of platelet membrane
 - Thrombin enhances activation of platelet membrane & plays a key role in coagulation
- Platelet and vascular contraction: during activation, serotonin (and other vasoactive agents) are released from platelets, promoting formation of a hemostatic plug
 - If endothelium is intact – serotonin will promote vasodilation
 - If endothelium is damaged – serotonin will promote vasoconstriction
 - Other vasoconstrictors include inflammatory mediators (i.e. leukotrienes released from white cells, tissue macrophages) → vascular stasis
- **Fibrinolysis**: breakdown of fibrin (via plasminogen → plasmin) is initiated at the same time as clotting mechanisms are activated
 - Plasmin = enzyme responsible for hydrolysis of fibrin

Systemic Thrombosis/Thromboembolism

Feline arterial (systemic) thrombosis/thromboembolism

- **Associations**
 - Feline aortic thromboembolism (ATE/FATE): common, devastating sequelae to feline cardiomyopathy
 - Intracardiac thrombosis with subsequent embolization – major cause
 - Neoplasia (esp. pulmonary carcinoma) – maybe 5% of cases

- **Pathophysiology**
 - Intracardiac thrombi formation may relate to pathologic changes → exposure of thrombogenic surfaces
 - Chamber dilation, valvular regurgitation, partial outflow obstruction in cases of extreme hypertrophy → alterations in blood flow
 - DIC and other coagulopathies are reported in cats with ATE
 - Feline platelets = more reactive than other species
 - Interrupted blood flow past the distal aorta → ischemic myopathy & neuropathy
 - Humoral agents released from the blood clot (thromboxane, endothelin, serotonin, etc.) play an important role in the pathophysiology

- **Clinical presentation**
 - Distal aortic thromboembolism (aka “Saddle Thrombus”) occurs in >90% of cases. Common, especially in cats with known myocardial disease
 - **Clinical signs**
 - Posterior paresis/paralysis
 - Loss of femoral pulses
 - Cool posterior extremities
 - Cyanotic/pale rear-limb paw pads
 - Cyanotic nail beds that do not bleed
 - Firm, painful gastrocnemius muscles
 - Vocalization (presumably due to pain)
 - **Simultaneous onset of acute CHF is common**
 - Weakness
 - Dyspnea
 - Pulmonary edema
 - **Sudden death due to coronary thromboembolism/thrombus occluding LVOT is possible**
 - **Diagnosis**
 - Can be first presenting evidence of cardiovascular disease (heart disease was previously undetected)
• Usually clinical signs are clear enough to make a diagnosis

• Differentials
 - IVDD
 - FCE
 - Spinal lymphoma
 - Trauma!!

• Cardiomyopathy signs may be present
 - Jugular distension
 - Murmur or arrhythmia
 - Gallop sounds

• CHF signs may be present
 - Dyspnea
 - Tachypnea
 - Weakness
 - Pulmonary crackles
 - Cyanosis

• Further workup
 - Thoracic radiographs
 - ECG
 - NT-proBNP
 - Echo

• Nonspecific angiography of aorta is also diagnostic – can localize thrombus and evaluate collateral circulation (is usually NOT necessary/indicated though)

• Ancillary testing may indicate -
 - Muscle injury → enzyme release: Increased CPK, ALT, AST, LDH
 - Stress: leukogram, hypoglycemia
 - DIC
 - Hypoxemia

Therapy

• Goals: supportive treatment of acute syndrome, relief of CHF, attempt to remove thrombi, establish collateral circulation

• If CHF present
 - Oxygen
 - Diuretics
 - +/- ACE inhibitors or pimobendan
 - AVOID propranolol and probably other beta-blocker (low cardiac output altered vasomotor tone may reduce blood flow to tissues at risk)

• Analgesics (i.e. fentanyl, buprenorphine, or other narcotics)

• Anticoagulation with heparin to prevent additional thrombosis
- Heparin can also activate plasminogen \(\rightarrow\) enhanced thrombolysis (unproven but suggested)
- Antiplatelet drugs in **acute** management

- Surgical embolectomy = high mortality rate. Reperfusion injury and decompensated condition of the patient at time of surgery. If done should likely be done early, within the first few hours of ATE

- Vasodilators (i.e. acepromazine or hydralazine) to induce collateral circulation
 - MAP = a KEY determinant of collateral flow!
 - These drugs can drop BP, and might reduce blood flow or limit opening up of collateral vessels
 - Efficacy not established

- Thrombolytic therapy (streptokinase, urokinase, or tissue plasminogen activator)
 - Common consequences of clot lysis include reperfusion injury (hyperkalemia and metabolic acidosis) and bleeding consequences can also happen with thrombolytics
 - Goal: early return of blood flow to tissues with compromised perfusion that are NOT yet necrotic
 - If thrombolytics are used – should be started within 12 hours, ideally within 1 hour of onset of clinical signs

- **Prevention**
 - Optimal therapy = cure underlying disease (i.e. DCM due to taurine deficiency)
 - Aspirin, heparin, LMWH, clopidogrel, Coumadin (warfarin)

- **Prognosis**
 - Devastating complication of feline myocardial disease
 - Median survival time = 61 d. – 11 mo. (if cat is not euthanized at time of presentation)
 - Repeated thrombosis is possible
 - Most common cause of subsequent death in treated cats = CHF

- Other clinical syndromes due to occlusion of –
 - Mesenteric artery
 - Renal artery
 - Hepatic artery
 - Splenic artery
 - Ovarian artery
 - Forelimb arteries (right forelimb may be more common than left forelimb; these often get better and cats usually will walk again)
Canine systemic thrombosis/thromboembolism

- Much less common in dogs
- Many cases are NOT of cardiogenic origin (rather due to systemic disease, develop in situ)
- Associations
 - Vascular disease
 - Arteriosclerosis
 - Vasculitis
 - Trauma
 - IV injection of an irritating/hypertonic substance
 - Neoplastic invasion
 - Bacterial endocarditis
 - Vascular stasis
 - Hypovolemia
 - Shock
 - Cardiac failure
 - Vascular compression
 - Hypercoagulability
 - Antithrombin III deficiency
 - Platelet disorders
 - Dehydration
 - Hyperviscosity
 - IMHA
 - Being a greyhound
 - Thrombotic events from sources in the veins (if ASD), cardiac valves/chambers
 - Introduction of foreign substances by trauma or iatrogenically
- Clinical presentation
 - Signs dependent on site of thrombosis, degree/duration of occlusion, and composition of thrombus
 - Some thrombi will NOT → clinical disease
 - In the dog – saddle thrombus can → posterior weakness/lameness ONLY (especially if partial or intermittent obstruction occurs; common when the thrombus develops in situ in the distal aorta)
 - Femoral pulses = weak to absent, hind limbs may be cool
 - Front limb thrombosis = LESS dramatic, unilateral
 - Endocarditis may → septic embolization of 1+ organ beds (kidneys, gut, liver, spleen, heart, spinal cord, brain)
 - Clinical signs are dependent upon which site is affected
- Diagnosis
 - Radiographs of thorax/abdomen may suggest underlying disease
 - Dirofilariasis
 - Neoplasia
 - Cardiomegaly
Radiopaque foreign object
- Laboratory tests may suggest systemic disease
 - Elevated hepatic/pancreatic enzymes
 - Azotemia
 - Proteinuria
 - Hematuria
 - Leukocytosis
 - Hypoproteinemia
 - Microfilaremia
- Echo or abdominal ultrasound may be useful, based upon clinical signs
 - i.e. visible thrombus in abdominal aorta or iliac arteries
- Angiography or CT of selected area could reveal lesions
- Treatment: newer anticoagulants and Coumadin MAY be most effective!
 - Correct underlying abnormality
 - Supportive therapy
 - Rehydration
 - Analgesics
 - Prevent thrombus enlargement
 - Heparin
 - Antiplatelet drugs
 - Coumadin or newer drugs like direct acting Factor anti-Xa inhibitors like rivaroxaban or apixaban may be the best approach!!
 - Thrombolytic therapy
 - Surgical embolectomy
- Prognosis is dependent upon underlying disease (usually guarded). Thrombosis recurrence is common

Pulmonary Thrombosis/Thromboembolism

- Associations
 - Dirofilariasis: heartworm is a well-documented cause of PTE
 - Nephrotic syndrome: proteinuria → loss of antithrombin
 - Autoimmune hemolytic anemia: many patients will succumb to PTE
 - Other causes of antithrombin deficiency
 - Hyperadrenocorticism
 - Hypothyroidism
 - Pancreatitis
 - DIC
 - Etc.
 - Deep vein thrombosis (esp. in people): thrombi embolize to the pulmonary circulation
- Clinical Presentation
 - Signs are nonspecific, mimic other cardiorespiratory diseases
Acute onset of dyspnea common***

- Diagnosis = difficult at best
 - Acutely ill patient, could succumb from diagnostic testing alone
 - Suggestive findings
 - Arterial hypoxemia (PaO2 < 80 mmHg)
 - Thoracic radiographs are NOT always suggestive of cardiorespiratory disease
 - Sometimes normal
 - Changes that MAY be seen include –
 - Pulmonary vessel size change
 - Lobar lucency
 - Small vessels in area that is affected by thrombus
 - RVE
 - Pulmonary infiltrates
 - Pleural effusion
 - Pulmonary angiography: injection of contrast may demonstrate filling defect in pulmonary artery OR a complete interruption of blood flow
 - Negative study = significant disease is NOT present
 - CT scan of thorax with contrast: currently the best diagnostic test for PTE. Can see the thrombus in the PA.

- Prevention: prophylactic therapy may be initiated if patient is predisposed to PTE (sepsis, neoplasia, prolonged recumbency, IMHA). Treat underlying disease/condition

- Treatment
 - Support with oxygen
 - Fluid support to maintain circulation
 - Heparin or LMWH
 - Antiplatelet drugs
 - Coumadin
 - +/- Newer anticoagulants like direct acting Factor anti-Xa inhibitors (rivaroxaban or apixaban), Thrombolytics in acute setting

- Prognosis: poor – guarded in severely ill patients requiring oxygen supplementation

Therapeutic Modalities for Thrombotic Diseases

Antiplatelet therapy: reduces platelet aggregation → altered thrombus formation. Prevention of vasoconstriction due to platelet release of substances (i.e. serotonin, PDGF)

- Aspirin (acetylsalicylic acid): blocks PG synthesis by irreversibly acetylating & inactivating COX.
 - The production of thromboxane is blocked
 - Prostacyclin synthesis (a vasodilator) is blocked simultaneously → potential consequences of vasoconstriction & vascular stasis
BUT – endothelial cells are able to produce prostacyclin within hours, so the antithrombotic effects predominate. Platelet inhibition = low doses
 - Used in cats with significant myocardial disease to prevent thromboembolic events
 - Side effects
 - GI distress
 - Potential for gastric ulceration/bleeding
 - Clopidogrel (Plavix): good antiplatelet therapy in most animals, less SE than aspirin

Anticoagulation therapy: prevent thrombus formation
 - Heparin (IV or SC): enhances the activity of antithrombin
 - Antithrombin = protease inhibitor found in normal plasma
 - Heparin-antithrombin complex will neutralize proteases formed during coagulation – i.e. thrombin (IIa)
 - Increases plasminogen activator → activation of fibrinolysis
 - Must give parenteral via IV CRI or frequent SC injections
 - Can use prior to starting a long-term therapy (i.e. warfarin) to initiate anticoagulation
 - Therapeutic dosage monitored via PTT levels
 - PTT increase 1.5X baseline or normal indicates the drug is working
 - Bleeding is a significant complication
 - Protamine sulfate = antidote
 - High side effect potential in dogs
 - Low-Molecular weight heparin: prevent thrombus formation
 - i.e. enoxaparin (Lovenox) and dalteparin (Fragmin)
 - Require SC injection of small volumes
 - Longer half-life than unfractioned heparin – only give 1-3X daily
 - Much more expensive than unfractioned heparin
 - Used for more chronic use (mo. – yr.)
 - Low MW fragments have a HIGH affinity for antithrombin III, inhibit factor X strongly, do NOT inhibit thrombin, and do NOT have a strong tendency to cause hemorrhage
 - Coumadin (Warfarin derivative): vitamin K-dependent anticoagulant
 - Prothrombin = coagulation factor dependent on vitamin K for synthesis
 - Can give orally, long-term prevention of thromboembolism
 - Inhibit the synthesis of coagulation factors – are NOT immediately active in vivo
 - Also decreases levels of protein C (antithrombotic agent) – so give with heparin for immediate therapy and to avoid an initial hypercoagulable state
 - PT is suggestive of drug efficacy – 2X increase from baseline. Monitor every 3-5 d. for 4-6 wk., then every few weeks while administering this drug
 - Newer anticoagulants: i.e. Rivaroxaban or apixaban – these drugs will likely replace Coumadin in the future
Thrombolytic therapy: treatment of acute thrombosis and arterial occlusion

- Dependent on presence of circulating plasminogen
- Plasmin = protease which cleaves circulating proteins, including fibrinogen, plasminogen, and also plasmin.
 - Fibrinogen degradation → fibrin degradation products (FDPs), which are anticoagulants
 - Excess concentration of plasmin due to generalized fibrinolysis activation (systemic fibrinolytic state) can → accumulation of plasmin, excessive fibrinolysis, bleeding
- Streptokinase: produced by Beta-hemolytic Streptococcus
 - Must be given in animals with plasminogen or plasmin BEFORE it can activate plasmin
 - Currently unavailable
- Urokinase: enzyme produced by human kidney cells, cleaves plasminogen
 - Theoretical advantages: preferential affinity for tissue plasminogen
 - Administered systemically or locally (intra-arterially)
 - Currently unavailable
- Tissue plasminogen activator (t-PA): an intrinsic (nonantigenic) protein of all mammals
 - Low affinity for circulating plasminogen – BIG advantage because it may allow systemic administration without induction of a systemic fibrinolytic state (will ONLY act on clots theoretically, but bleeding side effects are still possible)
 - Complications in cats with ATE
 - “Reperfusion syndrome” with hyperkalemia and metabolic acidosis
 - Bleeding complications
 - Neurologic signs
- Surgery (embolectomy): not common in vet med
 - Is not stated to improve clinical outcome
 - One recent case report