The cognitive mechanisms under formation and recognition of Chinese neo-blending characters

Nian Liu (nian.liu@ou.edu)
University of Oklahoma

In the age of information, we are in constant need of new words to describe emerging concepts. To fulfill the need, languages borrow from each other (transliterations), and assign new meaning to words and thereby get a new word with expanded meaning. But language users also seek for various means to create completely new words (Clark et al., 1994). This is done by regular and predictable processes such as compounding, clipping, back-formation, derivation, acronyming, and blending, with the last one being the focus of the current study.

Traditionally, blends have been seen as consciously formed lexemes and therefore as irregular. In a classical article Algeo (1977) discerns three main categories of lexical blending:

1. blends with overlapping: slanguage < slang + language; glasphalt < glass + asphalt
2. blends with clipping: brunch < breakfast + lunch; edutainment < education + entertainment.
3. blends with clipping and overlapping: motel < motor + hotel; froogle < frugal + google

Besides the form differences, blending can also be analyzed in terms of semantics. For example, Brunch is neither breakfast nor lunch, whereas edutainment clearly is entertainment and education. The same applies to smog and Chunnel, versus stagflation and Oxbridge. Moreover, smog and Oxbridge are clear type 2 examples, whereas Chunnel and stagflation may be described as special cases of type 3.

Some recent studies in corpus linguistics take further steps in exploring the formation and processing of blending—blending involves the coinage of a new lexeme by fusing parts of at least two other source words of which either one is shortened in the fusion and/or where there is some form of phonemic or graphemic overlap of the source words (Gries, 2004).

However, these analyses may not apply to newly emerged Chinese blending characters due to the logographic nature of Chinese writing system. Chinese is considered an isolating language that lacks morphological changes. Unlike most of the living languages, the orthography bears no logical relationship to pronunciation. And this feature excludes phonemic overlap to be a factor in the forming of Chinese blending characters.
The data we examined are popular inventions of blending characters collected from internet, such as .VALIDATION and .VALIDATION. These characters were created to represent a disyllabic or multidisyllabic word. It is worth noting that the blending characters cited here are different from characters such as .VALIDATION or .VALIDATION, as the latter ones are not formed from clipping process because both source characters appear in full form in the target character, thus should be categorized as fusion characters. On the other hand, a blending character is the result of combining the reduced form, usually the distinguishable part, of the source characters. In other words, radical/constituent omission is necessary in the formation of blending characters.

This paper aims to examine the similarities and differences between English blending words and Chinese blending characters, and further discuss the cognitive mechanisms under the formation and recognition of those neo-blending characters. Following a brief review of several previous classificatory studies, the paper analyzes the orthographic structure of Chinese blends based on perception model. The main factors to be discussed are (i) the amount of information each source character contributes; (ii) cognitive distinguishability of the constituents taken from source words, and (iii) the spatial organization of the contributing parts. The results show that the amount of material contributed by the words is determined by the degree of recognizability of the source characters, similar to English blends. However, the spatial operationalization of source characters to the blending character plays a vital role in Chinese blending character formation, whereas phonemic similarity, the most affecting factor in English blends, is completely irrelevant in the process.

The paper also points out potentially rewarding avenues of further research by proposing further behavioral studies to validate these results on the basis of naming/recognizing a comparison of popular blending characters to intentional blends that violates the proposed principles.

The fate of lexical innovations is not predetermined. Some nonce-formations, coined at the spur of the moment, remain ephemeral and are never used again. Others manage to spread and gain a certain degree of currency, but never make it into the common vocabulary shared by most speakers and disappear from active use after a brief period of time. Yet others diffuse rapidly and become permanent additions to the lexicon. The dynamics of these diffusion

\[\text{贵国 guìguó your country (honorific)}\]
\[\text{已阅 yǐyuè read (perfective aspect)}\]
processes, and the factors influencing the extent to which new words become conventionalized (or not) have not been investigated systematically so far. In our case, the number of Chinese characters increased significantly during the classical period but the productivity drops quickly in modern time due to the popularity of using compound words\(^3\) instead of creating new characters. The emergence of internet neo-blending characters shows dynamics and productivity of Chinese morphology and writing system, therefore worth linguists’ attention and exploration into its formation and spread.

More questions may rise in our research of newly-created characters and interest language policy makers/enforcement. To name a few, how can neologisms be detected as close to their moment of coinage as possible? How can their spread be monitored systematically? Which sources are particularly useful for detecting neologisms and how can data retrieval procedures be implemented? What are the factors that co-determine the time course and pathways of the conventionalization of lexical innovations? Which types of models provide a systematic account of the process of lexical innovation and adequately predict the effects of the factors influencing this process? Further research is required to provide more definitive answers to those questions.

\(^3\) With few examples such as intentionally created characters for elements.
Selected References

