Sustainable Materials for Food

Sustainable Materials Fall 2024 October 7th, 2024 Lecturer: Lauren Blake, PhD

Lecture 10- (some slight rearrangements)

Learning outcomes

- Get a **broad overview** of the motivation and technical concepts behind alt food
- Understand how the relevant manufacturing technologies are applied to food
- Understand the molecular basis for protein texturization
- Know the components of cell culture for growing microorganisms as well as stem cells in food applications
- Suggest quality evaluation methods for alternative proteins
- Identify several companies in the cellular agriculture field and analyze the biotechnology, motivations, and scientific obstacles behind their products

Meat demand and production continues to rise

Source: UN Food and Agriculture Organization (FAO)

OurWorldInData.org/meat-production • CC BY

Protein from animals is less efficient

 Animal-derived foods are less efficient in their land, water, and energy use as a means to feed this growing population

There are many issues with current proteins for food

Environment

- Water and land use
- Greenhouse gas emission

Safety

- Increased risk of type 2 diabetes and coronary heart disease
- Animals in the United States consume more than 2x as many medically important antibiotics as humans do. Medical experts expect 10 million annual deaths from antimicrobial resistance (AMR) in 2050, a 14-fold increase over current deaths.

Efficiency

- It takes nine calories of food fed to a chicken to produce one calorie of meat.
- 75% of agricultural land is used for raising and feeding livestock yet only provides 1/3 of the global protein supply.
- Ethics
 - Animal cruelty

Different animal proteins are used for different applications

Meat

- Myofibrillar
- Sarcoplasmic
- Stromal
- Muscle proteins (myofibrillar, sarcoplasmic, and stromal) are used for applications ranging from gelation to color formation

Dairy

- o Casein
- Whey
- Casein and whey are used for viscosity and stabilization of various food matrices

Egg

Egg white protein is used in forming networks for stability in whipping and heating of food products

Stem-cell derived meats

Recall from last week with Sydney Gladman: next-gen materials fall into 4 main categories

Stem-cell derived meats

The alternative protein landscape for food is divided into three main pillars

Animal product alternatives exist along a spectrum

Product Examples

Bottom-up approaches involve assembly of structural elements that are combined

Mycoprotein A fungus (Fusarium venenatum) is produced in a continuous fermentation process in bioreactors.

Wet spinning

A solution containing protein is extruded through a spinneret, and subsequently immersed into a bath containing a nonsolvent for the protein.

Electrospinning A biopolymer solution is pushed through a hollow needle or spinneret that has an electric potential relative to a ground electrode.

Cultured meat

Tissue-engineering techniques are used in vitro to culture animal cells. One exemplary burger has been fabricated using this process.

Top-down approach refers to structuring of biopolymer blends using an overall force field

Extrusion Plant proteins are plasticized/molten by a combination of heating, hydration and mechanical deformation.

Mixing of proteins and hydrocolloids Mixing protein with hydrocolloids that precipitate with multivalent cations yields fibrous products

Freeze structuring A slurry of proteins is frozen to generate structure

Shear cell technology

Shearing devices inspired by rheometers, the so-called shear cells, were developed in which intensive shear can be applied.

Discussion question:

What are the merits of top-down approaches versus bottom-up approaches?

Plant protein products exist on a processing spectrum

16

Fermentation

Plant-based meat alternatives are ripe for innovation

Core research areas

End product

Texturization of protein turns it from powder to fibrous structure

Texturization of proteins is the process of creating a 3-dimensional structure to match the **texture, mouthfeel, and appearance** of animal-based meat

- Denatures and aligns proteins
- Forms fibers that resemble muscle tissue
- Produces end products such as granules, shreds, and chunks

There are many ways to texturize plant protein

Extrusion cooking is the most common texturizing technology

Extrusion transforms **native ingredient biopolymers (inputs) into a continuous semisolid (output)**. To complete this process, a screw system within a barrel conveys mass (a combination of dry ingredients, water, and/or oil) through a die (small opening).

Figure 2: Schematic setup of the Process 11 Hygienic Twin-screw Extruder with length to diameter ratio of 40 and cooled slit die.

Texturization involves denaturing proteins and reforming new bonds

Discussion question: What kinds of bonds are reforming in the extrudate?

Possible answers:

- Hydrophobic interactions
- Hydrogen bonds
- Ionic interactions between charged amino acids
- COVALENT disulfide bonds (if protein contains cysteines)
- Van der waals

Many types of molecular interactions occur to texturize proteins

Discussion: Are INTER-molecular or INTRA-molecular interactions preferred during texturization processes?

INTRAmolecular: within the SAME strand

Fermentation

Stem-cell derived meats

Extruders are heavy duty equipment

Parameters and screw design make a big difference in optimization

Stem-cell derived meats

Low- vs. high-moisture extrusion results in different food applications

LOW-MOISTURE EXTRUDATE

- Extrusion inlet/process moisture content < 35%
- Restructured meat products (e.g., patties and links); made by hydrating TVP in water or broth (may also include oils)
- Hydrated product is blended with other ingredients to impart the taste, texture, color, and aroma of meat

HIGH-MOISTURE EXTRUDATE

- Extrusion inlet/process moisture content > 50%
- Whole muscle type products; best resembles muscle striata (e.g., fillets and strips)
- Extruded in a high-moisture form, then passed through one or more steps including marinating, coating, and cooling (refrigeration/freezing)

Production technology landscape

Stem-cell derived meats

Emerging tech: shear cell technology can use shear forces to texturize plant proteins

Source: Birgit L. Dekkers Creation of fibrous plant protein foods. PhD thesis, Wageningen University, Wageningen, the Netherlands (2018). ISBN 978-94-6343-319-8

Shear cell technology is gaining popularity

Shear cell technology produce very fibrous protein materials for alternative meats

calcium caseinate

soy protein isolate-wheat gluten blend

soy protein concentrate

Advantages

- Decently robust
- Decently scalable
- Lower environmental impact

Disadvantages

- Less commercial availability
- Orientation on microscale only

Source: Birgit L. Dekkers Creation of fibrous plant protein foods. PhD thesis, Wageningen University, Wageningen, the Netherlands (2018). ISBN 978-94-6343-319-8

Additive manufacturing involves building materials one layer at a time, ideal for structured materials

No custom programming! vs. CNC

ource://german.injectionmouldt

No molds! vs. injection molding, stamping, casting, etc.

Additive Manufacturing (AM) has many advantages

- **Shape complexity:** It is possible to build virtually any shape.
- Material complexity: Material can be processed one point, or one layer, at a time as a single material or as a combination of materials.
- **Hierarchical complexity:** Features can be designed with shape complexity across multiple size scales.
- Functional complexity: Functional devices can be produced in one build.

Credit: Redefine meat 3D printed steak

Additive manufacturing can also be done by material extrusion

- The build material is pushed through a nozzle in a continuous stream
- A printhead, containing the nozzle, moves around for layer-by-layer deposition
- Deposited material hardens and retains its shape
- The next layer is added on top, and the process is repeated
- Two basic types:
 - 1. Fused Deposition Modeling (FDM) and
 - 2. Direct Ink Writing (DIW)

Material extrusion techniques

Several startups are making structured meats using 3D printing technologies

Credit: MeaTech

Credit: Novameat

Credit: Cocuus

Production technology landscape

Fermentation includes cultivation of any microbial species for either whole-cell biomass or a higher value ingredient

Fermentation

Fermentation is expanding our ability to innovate in many categories of food

Traditional fermentation

- Uses **intact live microorganisms** to modulate and process plant-derived ingredients.
- Produces unique flavor and nutritional profiles, modified texture.
- Examples: Fermenting soybeans into tempeh, using lactic acid bacteria to produce dairy.

Biomass fermentation

- Leverages microorganism fast growth and high protein content to produce large protein quantities.
- Biomass serves as predominant or primary ingredient of a food product.
- Examples: Quorn's and Meati's filamentous fungi as base for meat analogs.

Precision fermentation

- Uses microbial hosts to produce specific functional ingredients that often require greater purity.
- Ingredients enable improved sensory characteristics, functional attributes.
- Examples: Perfect Day's dairy proteins; Clara Foods' egg proteins; Impossible Foods' heme; enzymes; flavoring agents; vitamins; pigments; fats.

Precision fermentation addresses key functional & sensory challenges in plant-based products and cultivated meat

Source: Good Food Institute Fermentation 101 Lecture

Precision fermentation allows one to *theoretically* make a bioidentical protein

nd B-casein

water channe

Discussion: What are major challenges with creating structural proteins using precision fermentation?

- Microbes cannot always always add post-translational modifications
- Proper protein folding using chaperones
- Protein stability during post-processing
- Genetic stability of gene in microbe
- Yields/titers

- Phosphorylation of serine and threonine
- Glycosylation of threonine
- Disulfide bond formation of cysteines
- Proteolysis (pre-degradation)
- Critical for forming casein micelles!!!

Precision fermentation in plants may be next?

Production technology landscape

Cultured meat involves differentiating animal stem cells into muscle cells then proliferating them

Fermentation

Cultured meat involves replicating animal tissue biologically

Core research areas

End product

Fermentation

Stem-cell derived meats

Cultured meat is a very new field of research

2013 Prof Mark Post World's First Cultivated Burger **2016 Memphis Meats** World's First Cultivated Meatball

2017 Finless Foods World's First Cultivated Fish 2019 Shiok Meats World's First Cultivated Shrimp Dumpling 45

Stem-cell derived meats

Major material challenge: animal cells like to grow on scaffolds

- Scaffolds can be plant, animal, or microorganismderived
- 2D or 3D depending on application
- Made of proteins or starches depending on cell type and source

Cell sheets can be combined to produce scaffold-free muscle cells

Tanaka et al. Production of scaffold-free cell-based meat using cell sheet technology. Npj Science of food 2022.