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Learning Outcomes

1. Name three unique opportunities within sustainable material
design
1. Carbon capture
2. Remediation
3. Biomanufacturing

2. Understand the caveats and obstacles within each new
opportunity area

3. Career opportunities within sustainable materials



Carbon Capture



Climate change is a result of natural and human drivers
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Source: U.S. Global Change Research Program, Fourth National Climate Assessment, Chapter 2: Our Changing Climate, 2017.



https://nca2018.globalchange.gov/chapter/2/

Carbon capture can occur via absorption or adsorption

Adsorption vs Absorption

Adsorption Absorption
Particles stick to the Particles soak into the bulk of
surface of the other phase. the other phase.
Surface
Interface
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Carbon capture can occur via adsorption onto chitosan
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Carbon capture can occur via absorption into hemp

* The biogenic component of the
material, hemp shivs, are 45%
carbon due to the atmospheric
carbon dioxide absorbed by the
plant during photosynthesis

CO; \/biogenlc =
) i uptake
* The non-biogenic component

of hemp concrete is the lime
binder, engulfing hemp shivs in
a hardened matrix and

hempcrete
blocks
production

. . . hempcrete wall
consuing carbon dioxide
through carbonation GHG omissions
CO; uptake
D B ogenc
X 2 2 N Dcartenation (240 days)
-50 =25 0 25 50 75  Setcemicagin)

GHG emissions balance (kg CO, eq) per m? of hempcrete wall 8



Engineered Living Materials (ELMs) can be
embedded within carbon capturing organisms
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Early proofs of concepts have shown successful
embedding of living algae into hydrogels
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* Thus far, only in
aqueous conditions

* Survival only measured

over 10 days (ideal
survival is months -

years)

* Small quantities and Dlsk  lbneyeemp  "GRG.A

thin objects tested

Datta et al. Phenotypically complex living materials containing engineered cyanobacteria. Nature Comu nications1.02023.



Materials can be embedded with purified
enzymes that sequester carbon

* Carbonic anhydrase: an enzyme catalyst
that speeds up a carbon + water reaction
resulting in bicarbonate (used in baking soda)
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Source: Sonja Salmon
Shen et al. Carbonic Anhydrase Immobilized on Textile Structured Packing Using 11

Chitosan Entrapment for CO, Capture. ACS Sustainable Chem Eng. 2022.



Pollution Remediation



Pollution remediation — how to deal with all the
unsustainable materials already in existence?

Strain Engineering
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Microbial enzymes can be used to degrade plastics
Into monomers

Depolymerises O
Oligomer Dimer

Monomer

Microbial biofilm
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Recall from last week: microbes were discovered which
can degrade plastic into individual components

PETase is secreted
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e Sifting through debris at a plastic

bottle recycling plant has led to the
discovery of microorganism that can
break down polyethylene
terephthalate (PET)

* Efficiency of the PETase

e Stability of the PETase in
different conditions

* Ability to manufacture the
PETase on a large scale
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Yoshida et al. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 2016



Strains of microbes can be genetically engineered
to express enzymes capable of plastic degradation
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Rational protein engineering of PETases reveals
more robust enzymatic activity

* PETases have had low
degradation efficiency due to low sl
thermal stability
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Son et al. Rational Protein Engineering of Thermo-Stable PETase from Ideonella sakaiensis for Highly Efficient PET
Degradation. ACS Catalysis. 2019 17
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Metagenomic analyses of biofilms formed on
ecessar

plastic can reveal distinct pathways n

* Metagenomic sequencing: study of the
function of entire DNA sequences isolated
from all the organismsin a bulk sample

* Used for studying distinct microbial
profiles within biofilms

* Metagenomic datasets can reveal trends
across many enzymes present which can
inform protein engineering strategies

Miao et al. Microbial carbon metabolic functions of biofilms on plastic debris influenced by
the substrate types and environmental factors. Environment International. 2021.
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Physico-chemical- biological treatment
combination can speed up process
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Sharma et al. Microplastics in the environment: Occurrence, perils, and eradication. Chemical Engineering Journal. 2021 19



Discussion section (~15-20 mins)

* Pre-work: Watch Suzanne Lee’s Ted Talk on Youtube “Why
"biofabrication" is the next industrial revolution” from 2020

* Form groups of 3-4 people and go over the following questions
together (10 mins)
o Do you think that biofabrication is feasible? Why or why not?

o Why is biofabrication more popular now? What technologies have enabled
it?

o What are the current obstacles for biofabricated materials?

o What steps need to be taken to move towards a biofabricated world?

* Let’s discuss as a group (5-10 mins)
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https://www.youtube.com/watch?v=7pMhqyteR5g&ab_channel=TED
https://www.youtube.com/watch?v=7pMhqyteR5g&ab_channel=TED

Biomanufacturing
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Biomanufacturing is the cultivation of cells to make a
higher value ingredient or material

Sugars

Proteins
Hormones
CH; OH

CH,

Bioplastics
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Biomanufacturing typically involves expressing
recombinant genes exogenously in host microbes

Exogenous gene Host plasmid backbone Ligated Recombinant DNA
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Biomanufacturing can take place in a variety
of hosts with unique advantages

- When choosing a host organism, scale-up
0. gmelini potential is just one of many considerations

E. coli

S. typhimurim @

R. sulfidophilum

C. aegagrus hircus
M. musculus

B. mori

=S % P. pastoris
MAC T-cells structural integrity
of product @I
Ay

cost of production
and productivity

) .
o o \\ L
SF9 cells S.cerevisiae §\ . d;% .
& %, %,
G
& 2, ©
BHK cells . - N %, Y.
0, 7
N. tobacum —— O
. A. thaliana \‘l\ — Q&
O. sativa ‘ @l - O
< =

24



A fermentor/bioreactor must maintain the right pH,
temperature, air flow, nutrients, and movement
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Scaling up is moving from lab testing to demo scale,
to pilot/commercial scale
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Lab Scale Demo Scale Commercialization Scale

Figure by: Eppendorf.com
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Scaling out is another strategy for increasing
biomanufacturing production

Scale-up: Bioreactors increase In
volume to enable more production
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Scale out: bioreactors stay at
smaller volumes, but the number of
bioreactors used in a manufacturing
run multiplies.
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Example of biomanufacturing: spider silk gene grown Iin
bacteria can produce many protein-based products

FINAL OUTPUT:
BREWED PROTEIN™ MATERIAL
(FIBERS, FILMS, RESINS, ETC))

THE PROGRAM:
DNA

THE FACTORY: INTERMEDIATE OUTPUT:
s CELLS / MICROBES BREWED PROTEIN™ POWDER

THE RAW MATERIAL:
SUGARS

28
Photos of Spiber Inc's Brewed Protein™



Molecular farming in plants Iis another promising
biomanufacturing alternative

G 4@; @IDEY TEK

Spider Silk Genes

They also tried:

« According to the
CEOQO of Spidey
Tek, the sale of
alfalfa to the
agricultural
Industry offsets
100% of the
production
costs of the
spider silk
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Feedstocks lignocellulosics- what to do with
all this lignin??

* Engineering of cells to metabolize lignocellulosic
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There are many diverse career opportunities
within sustainable material innovation

Advocacy via non-profit Consulting Academia (PhD, post-doc,
organizations professor)
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